• Title/Summary/Keyword: estimation by learning

Search Result 613, Processing Time 0.028 seconds

AdaMM-DepthNet: Unsupervised Adaptive Depth Estimation Guided by Min and Max Depth Priors for Monocular Images

  • Bello, Juan Luis Gonzalez;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.252-255
    • /
    • 2020
  • Unsupervised deep learning methods have shown impressive results for the challenging monocular depth estimation task, a field of study that has gained attention in recent years. A common approach for this task is to train a deep convolutional neural network (DCNN) via an image synthesis sub-task, where additional views are utilized during training to minimize a photometric reconstruction error. Previous unsupervised depth estimation networks are trained within a fixed depth estimation range, irrespective of its possible range for a given image, leading to suboptimal estimates. To overcome this suboptimal limitation, we first propose an unsupervised adaptive depth estimation method guided by minimum and maximum (min-max) depth priors for a given input image. The incorporation of min-max depth priors can drastically reduce the depth estimation complexity and produce depth estimates with higher accuracy. Moreover, we propose a novel network architecture for adaptive depth estimation, called the AdaMM-DepthNet, which adopts the min-max depth estimation in its front side. Intensive experimental results demonstrate that the adaptive depth estimation can significantly boost up the accuracy with a fewer number of parameters over the conventional approaches with a fixed minimum and maximum depth range.

  • PDF

Force/Servo Control Using Control Knowledge Base Fuzzy Learning Control (제어 지식 베이스형 퍼지 학습제어에 의한 힘/서보계의 제어)

  • Chung, Sang Keun;Park, Chong Kug
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.33-52
    • /
    • 1992
  • In this paper, Controlled Knowledge Base(CKB) type fuzzy learning controller for force/servo control system was proposed and the application for them was also studied. To achieve them, we derive fuzzy set from expert knowledges and reson the appropriate control gains by parameter estimation of object. Then, we proved it by computer simulation that we can reduce the ambigious effect, which is not able to be estimated, by designing the controller based on CKB.

  • PDF

A Structure of Personalized e-Learning System Using On/Off-line Mixed Estimations Based on Multiple-Choice Items

  • Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.5 no.1
    • /
    • pp.51-55
    • /
    • 2009
  • In this paper, we present a structure of personalized e-Learning system to study for a test formalized by uniform multiple-choice using on/off line mixed estimations as is the case of Driver :s License Test in Korea. Using the system a candidate can study toward the license through the Internet (and/or mobile instruments) within the personalized concept based on IRT(item response theory). The system accurately estimates user's ability parameter and dynamically offers optimal evaluation problems and learning contents according to the estimated ability so that the user can take possession of the license in shorter time. In order to establish the personalized e-Learning concepts, we build up 3 databases and 2 agents in this system. Content DB maintains learning contents for studying toward the license as the shape of objects separated by concept-unit. Item-bank DB manages items with their parameters such as difficulties, discriminations, and guessing factors, which are firmly related to the learning contents in Content DB through the concept of object parameters. User profile DB maintains users' status information, item responses, and ability parameters. With these DB formations, Interface agent processes user ID, password, status information, and various queries generated by learners. In addition, it hooks up user's item response with Selection & Feedback agent. On the other hand, Selection & Feedback agent offers problems and content objects according to the corresponding user's ability parameter, and re-estimates the ability parameter to activate dynamic personalized learning situation and so forth.

Three Stage Neural Networks for Direction of Arrival Estimation (도래각 추정을 위한 3단계 인공신경망 알고리듬)

  • Park, Sun-bae;Yoo, Do-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2020
  • Direction of arrival (DoA) estimation is a scheme of estimating the directions of targets by analyzing signals generated or reflected from the targets and is used in various fields. Artificial neural networks (ANN) is a field of machine learning that mimics the neural network of living organisms. They show good performance in pattern recognition. Although researches has been using ANNs to estimate the DoAs, there are limitationsin dealing with variations of the signal-to-noise ratio (SNR) of the target signals. In this paper, we propose a three-stage ANN algorithm for DoA estimation. The proposed algorithm can minimize the performance reduction by applying the model trained in a single SNR environment to various environments through a 'noise reduction process'. Furthermore, the scheme reduces the difficulty in learning and maintains efficiency in estimation, by employing a process of DoA shift. We compare the performance of the proposed algorithm with Cramer-Rao bound (CRB) and the performances of existing subspace-based algorithms and show that the proposed scheme exhibits better performance than other schemes in some severe environments such as low SNR environments or situations in which targets are located very close to each other.

Development of DL-MCS Hybrid Expert System for Automatic Estimation of Apartment Remodeling (공동주택 리모델링 자동견적을 위한 DL-MCS Hybrid Expert System 개발)

  • Kim, Jun;Cha, Heesung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.113-124
    • /
    • 2020
  • Social movements to improve the performance of buildings through remodeling of aging apartment houses are being captured. To this end, the remodeling construction cost analysis, structural analysis, and political institutional review have been conducted to suggest ways to activate the remodeling. However, although the method of analyzing construction cost for remodeling apartment houses is currently being proposed for research purposes, there are limitations in practical application possibilities. Specifically, In order to be used practically, it is applicable to cases that have already been completed or in progress, but cases that will occur in the future are also used for construction cost analysis, so the sustainability of the analysis method is lacking. For the purpose of this, we would like to suggest an automated estimating method. For the sustainability of construction cost estimates, Deep-Learning was introduced in the estimating procedure. Specifically, a method for automatically finding the relationship between design elements, work types, and cost increase factors that can occur in apartment remodeling was presented. In addition, Monte Carlo Simulation was included in the estimation procedure to compensate for the lack of uncertainty, which is the inherent limitation of the Deep Learning-based estimation. In order to present higher accuracy as cases are accumulated, a method of calculating higher accuracy by comparing the estimate result with the existing accumulated data was also suggested. In order to validate the sustainability of the automated estimates proposed in this study, 13 cases of learning procedures and an additional 2 cases of cumulative procedures were performed. As a result, a new construction cost estimating procedure was automatically presented that reflects the characteristics of the two additional projects. In this study, the method of estimate estimate was used using 15 cases, If the cases are accumulated and reflected, the effect of this study is expected to increase.

SOM Matting for Alpha Estimation of Object in a Digital Image (디지털 영상 객체의 불투명도 추정을 위한 SOM Matting)

  • Park, Hyun-Jun;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.1981-1986
    • /
    • 2009
  • This paper presents new matting techniques. The matting is an alpha estimation technique of object in an image. We can extract the object in an image naturally using the matting technique. The proposed algorithms begin by segmenting an image into three regions: definitely foreground, definitely background, and unknown. Then we estimate foreground, background, and alpha for all pixels in the unknown region. The proposed algorithms learn the definitely foreground and definitely background using self-organizing map(SOM), and estimate an alpha value of each pixel in the unknown region using SOM learning result. SOM matting is distinguished between global SOM matting and local SOM matting by learning method. Experiment results show the proposed algorithms can extract the object in an image.

A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D information (RGB-D 정보를 이용한 2차원 키포인트 탐지 기반 3차원 인간 자세 추정 방법)

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.41-51
    • /
    • 2018
  • Recently, in the field of video surveillance, deep learning based learning method is applied to intelligent video surveillance system, and various events such as crime, fire, and abnormal phenomenon can be robustly detected. However, since occlusion occurs due to the loss of 3d information generated by projecting the 3d real-world in 2d image, it is need to consider the occlusion problem in order to accurately detect the object and to estimate the pose. Therefore, in this paper, we detect moving objects by solving the occlusion problem of object detection process by adding depth information to existing RGB information. Then, using the convolution neural network in the detected region, the positions of the 14 keypoints of the human joint region can be predicted. Finally, in order to solve the self-occlusion problem occurring in the pose estimation process, the method for 3d human pose estimation is described by extending the range of estimation to the 3d space using the predicted result of 2d keypoint and the deep neural network. In the future, the result of 2d and 3d pose estimation of this research can be used as easy data for future human behavior recognition and contribute to the development of industrial technology.

Improved Estimation Method for the Capacitor Voltage in Modular Multilevel Converters Using Distributed Neural Network Observer

  • Mehdi Syed Musadiq;Dong-Myung Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.430-438
    • /
    • 2023
  • The Modular Multilevel Converter (MMC) has emerged as a key component in HVDC systems due to its ability to efficiently transmit large amounts of power over long distances. In such systems, accurate estimation of the MMC capacitor voltage is of utmost importance for ensuring optimal system performance, stability, and reliability. Traditional methods for voltage estimation may face limitations in accuracy and robustness, prompting the need for innovative approaches. In this paper, we propose a novel distributed neural network observer specifically designed for MMC capacitor voltage estimation. Our observer harnesses the power of a multi-layer neural network architecture, which enables the observer to learn and adapt to the complex dynamics of the MMC system. By utilizing a distributed approach, we deploy multiple observers, each with its own set of neural network layers, to collectively estimate the capacitor voltage. This distributed configuration enhances the accuracy and robustness of the voltage estimation process. A crucial aspect of our observer's performance lies in the meticulous initialization of random weights within the neural network. This initialization process ensures that the observer starts with a solid foundation for efficient learning and accurate voltage estimation. The observer iteratively updates its weights based on the observed voltage and current values, continuously improving its estimation accuracy over time. The validity of proposed algorithm is verified by the result of estimated voltage at each observer in capacitor of MMC.

Semi-supervised Learning for the Positioning of a Smartphone-based Robot (스마트폰 로봇의 위치 인식을 위한 준 지도식 학습 기법)

  • Yoo, Jaehyun;Kim, H. Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.565-570
    • /
    • 2015
  • Supervised machine learning has become popular in discovering context descriptions from sensor data. However, collecting a large amount of labeled training data in order to guarantee good performance requires a great deal of expense and time. For this reason, semi-supervised learning has recently been developed due to its superior performance despite using only a small number of labeled data. In the existing semi-supervised learning algorithms, unlabeled data are used to build a graph Laplacian in order to represent an intrinsic data geometry. In this paper, we represent the unlabeled data as the spatial-temporal dataset by considering smoothly moving objects over time and space. The developed algorithm is evaluated for position estimation of a smartphone-based robot. In comparison with other state-of-art semi-supervised learning, our algorithm performs more accurate location estimates.

A Basic Study on Estimation Method of Concrete Compressive Strength Based on Deep Learning Algorithm Considering Mixture Factor (배합 인자를 고려한 Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 기법에 관한 기초적 연구)

  • Lee, Seung-Jun;Kim, In-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.83-84
    • /
    • 2017
  • In the construction site, it is necessary to estimate the compressive strength of concrete in order to adjust the demolding time of the form, and establish and adjust the construction schedule. The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, seven influential factors (W/B ratio, Water, Cement, Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at three conferences in order to know the various correlations among data and the tendency of data. The purpose of this paper is to estimate compressive strength more accurately by applying it to algorithm of the Deep learning.

  • PDF