• Title/Summary/Keyword: est2 gene

Search Result 125, Processing Time 0.04 seconds

The Hypernodulating nts Mutation Induces Jasmonate Synthetic Pathway in Soybean Leaves

  • Seo, Hak Soo;Li, Jinjie;Lee, Sun-Young;Yu, Jae-Woong;Kim, Kil-Hyun;Lee, Suk-Ha;Lee, In-Jung;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.185-193
    • /
    • 2007
  • Symbiotic nitrogen fixation with nitrogen-fixing bacteria in the root nodules is a distinctly beneficial metabolic process in legume plants. Legumes control the nodule number and nodulation zone through a systemic negative regulatory system between shoot and root. Mutation in the soybean NTS gene encoding GmNARK, a CLAVATA1-like serine/threonine receptor-like kinase, causes excessive nodule development called hypernodulation. To examine the effect of nts mutation on the gene expression profile in the leaves, suppression subtractive hybridization was performed with the trifoliate leaves of nts mutant 'SS2-2' and the wild-type (WT) parent 'Sinpaldalkong2', and 75 EST clones that were highly expressed in the leaves of the SS2-2 mutant were identified. Interestingly, the expression of jasmonate (JA)-responsive genes such as vspA, vspB, and Lox2 were upregulated, whereas that of a salicylate-responsive gene PR1a was suppressed in the SS2-2 mutant. In addition, the level of JA was about two-fold higher in the leaves of the SS2-2 mutant than in those of the WT under natural growth conditions. Moreover, the JA-responsive gene expression persists in the leaves of SS2-2 mutant without rhizobia infection in the roots. Taken together, our results suggest that the nts mutation increases JA synthesis in mature leaves and consequently leads to constitutive expression of JA-responsive genes which is irrelevant to hypernodulation in the root.

Molecular Characterization, Chromosomal Localizations, Expression Profile, and Association Analysis of the Porcine PECI Gene with Carcass Traits

  • Gao, H.;Fan, B.;Zhu, M.J.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.7-12
    • /
    • 2010
  • The full-length cDNA of the porcine peroxisomal ${\Delta}^3$,${\Delta}^2$-enoyl-CoA isomerase (PECI) gene encodes a monofunctional peroxisomal ${\Delta}^3$,${\Delta}^2$-enoyl-CoA isomerase. Cloning and sequencing of the porcine PECI cDNA revealed the presence of an 1185-base pair open reading frame predicted to encode a 394-amino acid protein by the 5'rapid amplification of cDNA ends (5'RACE) and EST sequences. The porcine PECI gene was expressed in seven tissues (heart, liver, spleen, lung, kidney, skeletal muscle, fat) which was revealed by reverse transcriptase-polymerase chain reaction (RT-PCR). The porcine PECI was mapped to SSC71/2 p11-13 using the somatic cell hybrid panel (SCHP) and the radiation hybrid panel (RH) (LOD score 12.84). The data showed that PECI was closely linked to marker S0383. A C/T single nucleotide polymorphism in PECI exon 10 (3'UTR) was detected as a PvuII PCR-RFLP. Association analysis in our experimental pig population showed that different genotypes of PECI gene were significantly associated with the Average Backfat thickness (ABF) (p<0.05) and Buttock backfat thickness (p<0.01).

Gene Expression Analysis of Inducible cAMP Early Repressor (ICER) Gene in Longissimus dorsi of High- and Low Marbled Hanwoo Steers (한우 등심부위 근육 내 조지방함량에 따른 inducible cAMP early repressor (ICER) 유전자발현 분석)

  • Lee, Seung-Hwan;Kim, Nam-Kuk;Kim, Sung-Kon;Cho, Yong-Min;Yoon, Du-hak;Oh, Sung-Jong;Im, Seok-Ki;Park, Eung-Woo
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1090-1095
    • /
    • 2008
  • Marbling (intramuscular fat) is an important factor in determining meat quality in Korean beef market. A grain based finishing system for improving marbling leads to inefficient meat production due to an excessive fat production. Identification of intramuscular fat-specific gene might be achieved more targeted meat production through alternative genetic improvement program such as marker assisted selection (MAS). We carried out ddRT-PCR in 12 and 27 month old Hanwoo steers and detected 300 bp PCR product of the inducible cAMP early repressor (ICER) gene, showing highly gene expression in 27 months old. A 1.5 kb sequence was re-sequenced using primer designed base on the Hanwoo EST sequence. We then predicted the open reading frame (ORF) of ICER gene in ORF finder web program. Tissue distribution of ICER gene expression was analysed in eight Hanwoo tissue using realtime PCR analysis. The highest ICER gene expression showed in Small intestine followed by Longissimus dorsi. Interestingly, the ICER gene expressed 2.5 time higher in longissimus dorsi than in same muscle type, Rump. For gene expression analysis in high- and low marbled individuals, we selected 4 and 3 animal based on the muscle crude fat contents (high is 17-32%, low is 6-7% of crude fat contents). The ICER gene expression was analysed using ANOVA model. Marbling (muscle crude fat contents) was affected by ICER gene (P=0.012). Particularly, the ICER gene expression was 4 times higher in high group (n=4) than low group (n=3). Therefore, ICER gene might be a functional candidate gene related to marbling in Hanwoo.

GeneFishing PCR 기법을 이용한 한우 등심조직의 육질 등급 간 차등 발현 유전자의 발굴

  • Sin, Seong-Cheol;Sin, Gi-Hyeon;Park, Jong-Geun;Lee, Jun-Je;Baek, Myeong-Gi;Heo, Yeon-Beom;Chae, Ji-Seon;Jeong, Gu-Yong;Jeong, Ui-Ryong
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2005.10a
    • /
    • pp.119-122
    • /
    • 2005
  • 본 연구는 한우 근내 지방 축적 기작을 구명하고 고급육과 저급육에서 차등 발현되는 유전자를 발굴 동정하여 한우 육질 진단을 위한 분자 표지 마커로 활용하기 위해 GeneFishing PCR 기법을 이용하여 한우 육질등급에 따른 등심조직에서 차등적으로 발현되는 유전자를 분석하였다. 한우 육질 등급($1^+$ 등급 vs 3 등급)간에 총 10개의 차등 발현 유전자가 확인되었고 이 가운데 고급육 한우 등심에서 발현량이 높은 유전자가 4개 그리고 저급육 등심에서 발현량이 높은 유전자 6개가 각각 검출되었다. 발현량 차이 유전자를 cloning하여 염기서열을 분석하고 상동성 검색을 실시한 결과 고급육에서 발현량이 높은 DEG는 주로 EST(expressed sequence tag) 유전자들로 밝혀졌고 저급육에서 발현량이 높은 DEG는 malate dehydrogenase 2(MDH2), myosin heavy chain 2a, triosephosphate isomerase 1(TPI 1), actin, alpha 1, skeletal muscle(ACTA1 ) 유전자들로 동정 되었다. 본 연구를 통해 한우 육질간 차등 발현되는 유전자들은 한우 육질 및 등급판정을 위한 표지인자(marker)로 활용할 수 있어 유전자 마커를 이용한 고급육 생산 한우의 육질 조기진단이 가능할 것이다.

  • PDF

Isolation and Characterization of Pathogen inducible Leucine Zipper containing Gene from rice (Oryza sativa L. cv. Dongjin)

  • Park, Sang-Ryeol;Song, Hae-Sook;Moon, Kyung-Mi;Hwang, Duk-Ju;Kim, Tae-Ho;Han, Seong-Sook;Go, Seung-Joo;Byun, Myung-Ok
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.83.2-83
    • /
    • 2003
  • A full length cDNA, OsLEUZIP, encoding leucine zipper containing protein from rice EST of rice (0ryza sativa L. cv. Dongjin) treated Xanthomonas oryzae pv. oryzae 10331. OsLEUZIP contains 1,227 bp nucleotides and encodes a protein of 408 amino acid residues with predicted molecular weight of 47,229 Da. The deduced amino acid sequence of OsLEUZIP has consensus sequence of leucine zipper from PROSITE (PDOC00029), L-X(6)-L-X(6)-L-X(6) -L. OsLEUZIP gene were preferentially induced in rice during incompatible interaction with Xanthomonas oryzae pv. oryzae 10331 and Pyracuraria grisea KJ-301. Expression of OsLEUZIP gene was also induced by treatment of abiotics such as ethephon and ABA. Our data represented in this study suggesting that OsLEUZIP gene may play an important role in the rice defense-related. Further studies of this gene, overexpression in rice, yeast-two hybrid assay, electrophoretic mobility shift assay and northern blot analyses of transgenic plant, would be useful to elucidate the role of the OsLEUZIP gene in defense responses of rice.

  • PDF

Molecular approaches for improvement of medicinal and aromatic plants

  • Kumar, Jitendra;Gupta, Pushpendra Kumar
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.93-112
    • /
    • 2008
  • Medicinal and aromatic plants (MAPs) are important sources for plant secondary metabolites, which are important for human healthcare. Improvement of the yield and quality of these natural plant products through conventional breeding is still a challenge. However, recent advances in plant genomics research has generated knowledge leading to a better understanding of the complex genetics and biochemistry involved in biosynthesis of these plant secondary metabolites. This genomics research also concerned identification and isolation of genes involved in different steps of a number of metabolic pathways. Progress has also been made in the development of functional genomics resources (EST databases and micro-arrays) in several medicinal plant species, which offer new opportunities for improvement of genotypes using perfect markers or genetic transformation. This review article presents an overview of the recent developments and future possibilities in genetics and genomics of MAP species including use of transgenic approach for their improvement.

Analysis and Identification of Expressed Sequence Tags in Hairy Root Induced from Korean Ginseng (Panax ginseng C. A. Meyer)

  • Yang, Deok-Chun;In, Jun-Gyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.154-162
    • /
    • 2004
  • Hairy roots were induced from Korean ginseng (Panax ginseng C. A. Meyer) root explants and studied for their gene expression. A total of 3,000 ESTs (expressed sequence tags) from ginseng hairy root were determined and about 2,700 ESTs have a length of readable sequence, which result in 1,352 unique ESTs sequences. The 879 ESTs showed significant similarities to known nucleotide or amino acid sequences in other plant species, which were divided into eleven categories depending upon gene function. The remaining 473 sequences showed no significant matches, which are likely to be transcripts or to be matched to other organisms. The results indicated that the analysis of the ginseng hairy root ESTs by partial sequencing of random cDNA clones may be an efficient approach to isolate genes that are functional in ginseng root in a large scale. Our extensive EST analysis of genes expressed in ginseng hairy root not only contributes to the understanding of the dynamics of genome expression patterns in root organ but also adds data to the repertoire of all genomic genes.

In silico analysis of MeJA-induced comparative transcriptomes in Brassica oleraceae L. var. capitata

  • Lee, Ok Ran;Kim, Dae-Soo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • Brassica oleraceae var capitata is a member of the Brassicaceae family and is widely used as an horticultural crop. In the present study, transcriptome analysis of B. oleraceae L. var capitata was done for the first time using eight-week old seedlings treated with $50{\mu}m$ MeJA, versus mock-treated samples. The complete transcripts for both samples were obtained using the GS-FLX sequencer. Overall, we obtained 275,570 and 266,457 reads from seedlings treated with or without $50{\mu}m$ MeJA, respectively. All the obtained reads were annotated using biological databases and functionally classified using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomics (KEGG). By using GO analyses, putative transcripts were examined in terms of biotic and abiotic stresses, cellular component organization, biogenesis, and secondary metabolic processes. The KEGG pathways for most of the transcripts were involved in carbohydrate metabolism, energy metabolism, and secondary metabolite synthesis. In order to double the sequenced data, we randomly chose two putative genes involved in terpene biosynthetic pathways and studied their transcript patterns under MeJA treatment. This study will provide us a platform to further characterize the genes in B. oleracea var capitata.

Gene Duplications Revealed during the Process of SNP Discovery in Soybean[Glycine max(L.) Merr.]

  • Cai, Chun Mei;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.237-242
    • /
    • 2007
  • Genome duplication(i.e. polyploidy) is a common phenomenon in the evolution of plants. The objective of this study was to achieve a comprehensive understanding of genome duplication for SNP discovery by Thymine/Adenine(TA) cloning for confirmation. Primer pairs were designed from 793 EST contigs expressed in the roots of a supernodulating soybean mutant and screened between 'Pureunkong' and 'Jinpumkong 2' by direct sequencing. Almost 27% of the primer sets were failed to obtain sequence data due to multiple bands on agarose gel or poor quality sequence data from a single band. TA cloning was able to identify duplicate genes and the paralogous sequences were coincident with the nonspecific peaks in direct sequencing. Our study confirmed that heterogeneous products by the co-amplification of a gene family member were the main cause of obtaining multiple bands or poor quality sequence data in direct sequencing. Counts of amplified bands on agarose gel and peaks of sequencing trace suggested that almost 27% of nonrepetitive soybean sequences were present in as many as four copies with an average of 2.33 duplications per segment. Copy numbers would be underestimated because of the presence of long intron between primer binding sites or mutation on priming site. Also, the copy numbers were not accurately estimated due to deletion or tandem duplication in the entire soybean genome.

  • PDF

Bioinformatics Approach to Direct Target Prediction for RNAi Function and Non-specific Cosuppression in Caenorhabditis elegans (생물정보학적 접근을 통한 Caenorhabditis elegans 모델시스템의 생체내 RNAi 기능예측 및 비특이적 공동발현억제 현상 분석)

  • Kim, Tae-Ho;Kim, Eui-Yong;Joo, Hyun
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • Some computational approaches are needed for clarifying RNAi sequences, because it takes much time and endeavor that almost of RNAi sequences are verified by experimental data. Incorrectness of RNAi mechanism and other unaware factors in organism system are frequently faced with questions regarding potential use of RNAi as therapeutic applications. Our massive parallelized pair alignment scoring between dsRNA in Genebank and expressed sequence tags (ESTs) in Caenorhabditis elegans Genome Sequencing Projects revealed that this provides a useful tool for the prediction of RNAi induced cosuppression details for practical use. This pair alignment scoring method using high performance computing exhibited some possibility that numerous unwanted gene silencing and cosuppression exist even at high matching scores each other. The classifying the relative higher matching score of them based on GO (Gene Ontology) system could present mapping dsRNA of C. elegans and functional roles in an applied system. Our prediction also exhibited that more than 78% of the predicted co-suppressible genes are located in the ribosomal spot of C. elegans.