• Title/Summary/Keyword: error variance

Search Result 727, Processing Time 0.033 seconds

A design of controller for robust servomechanism using LQG/LTR method (LQG/LTR 방법을 이용한 강인한 서어보메커니즘의 제어기 설계)

  • 최중락;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.483-487
    • /
    • 1986
  • The LQG/LTR method is applied to the real servomechanism with the unknown modeling error and system noise variance Q$_{2}$. The equivalent discretized LQG controller is implemented on the 16-bit microcomputer and the experimental results show the improved stability and the satisfactory performance when the noise variance Q$_{2}$ is increased infinitly.

  • PDF

Bootstrap of LAD Estimate in Infinite Variance AR(1) Processes

  • Kang, Hee-Jeong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.383-395
    • /
    • 1997
  • This paper proves that the standard bootstrap approximation for the least absolute deviation (LAD) estimate of .beta. in AR(1) processes with infinite variance error terms is asymptotically valid in probability when the bootstrap resample size is much smaller than the original sample size. The theoretical validity results are supported by simulation studies.

  • PDF

Efficiency of Variance Estimators for Two-stage PPS Systematic Sampling (2단 크기비례 계통추출법의 분산추정량 효율성 비교)

  • Kim, Young-Won;Kim, Yeny;Han, Hye-Eun;Kwak, Eun-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1033-1041
    • /
    • 2013
  • In this paper, we investigate several variance estimators for pps systematic sampling. Unfortunately, there is no unbiased variance estimators for a systematic sample because systematic sampling can be regarded as a random selection of one cluster. This study provides guidance on which variance estimator may be more appropriate than others in several circumstances. We judge the efficiency of variance estimators for systematic sampling based on of their relative biases and relative mean square error. Also, we investigate variance estimation problems for two-stage systematic sampling applied for the Food Raw Material Consumption Survey and the Establishment Labor Force Survey simulation study, in order to consider the popular two-stage pps systematic sample design for establishment and household survey in Korea.

Reference Priors in a Two-Way Mixed-Effects Analysis of Variance Model

  • Chang, In-Hong;Kim, Byung-Hwee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.317-328
    • /
    • 2002
  • We first derive group ordering reference priors in a two-way mixed-effects analysis of variance (ANOVA) model. We show that posterior distributions are proper and provide marginal posterior distributions under reference priors. We also examine whether the reference priors satisfy the probability matching criterion. Finally, the reference prior satisfying the probability matching criterion is shown to be good in the sense of frequentist coverage probability of the posterior quantile.

  • PDF

Estimation of the Mean and Variance for Normal Distributions whose Both Sides are Truncated

  • Hong, Chong-Sun;Choi, Yun-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.249-259
    • /
    • 2002
  • In order to estimate the mean and variance for a Normal distribution which is truncated at both right and left sides, maximum likelihood estimators based on the entire sample from the original distribution are compared with the sample mean and variance of the censored sample which is the data remaining after truncation using simulation. We found that, surprisingly, the mean squared error of the mean based on the censored data Is smaller than that of the full sample estimators.

Design of Generalized Minimum Variance Controllers for Nonlinear Systems

  • Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.281-292
    • /
    • 2006
  • The design and implementation of Generalized Minimum Variance control laws for nonlinear multivariable systems that can include severe nonlinearities is considered. The quadratic cost index minimised involves dynamically weighted error and nonlinear control signal costing terms. The aim here is to show the controller obtained is simple to design and implement. The features of the control law are explored. The controller obtained includes an internal model of the process and in one form is a nonlinear version of the Smith Predictor.

Confidence Intervals on Variance Components in Two Stage Regression Model

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.2
    • /
    • pp.29-36
    • /
    • 1996
  • In regression model with nested error structure interval estimations about variability on different stages are proposed. This article derives an approximate confidence interval on the variance in the first stage and an exact confidence interval on the variance in the second stage in two stage regression model. The approximate confidence interval is vased on Ting et al. (1990) method. Computer simulation is procided to show that the approximate confidence interval maintains the stated confidence coeffient.

  • PDF

A Study on Stochastic Simulation Models to Internally Validate Analytical Error of a Point and a Line Segment (포인트와 라인 세그먼트의 해석적 에러 검증을 위한 확률기반 시뮬레이션 모델에 관한 연구)

  • Hong, Sung Chul;Joo, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2013
  • Analytical and simulation error models have the ability to describe (or realize) error-corrupted versions of spatial data. But the different approaches for modeling positional errors require an internal validation that ascertains whether the analytical and simulation error models predict correct positional errors in a defined set of conditions. This paper presents stochastic simulation models of a point and a line segm ent to be validated w ith analytical error models, which are an error ellipse and an error band model, respectively. The simulation error models populate positional errors by the Monte Carlo simulation, according to an assumed error distribution prescribed by given parameters of a variance-covariance matrix. In the validation process, a set of positional errors by the simulation models is compared to a theoretical description by the analytical error models. Results show that the proposed simulation models realize positional uncertainties of the same spatial data according to a defined level of positional quality.

Parameter Design under General Loss Functions (일반적 손실함수 하에서의 파라미터 설계방법)

  • Jeong, Hyun-Seok;Ko, Sun-Woo;Yum, Bong-Jin
    • IE interfaces
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 1994
  • In a recent article, Leon et al. lucidly explained the ideas of the Taguchi two-stage procedure for parameter design optimization, and proposed alternative performance measures called PerMIA to the signal-to-noise ratios. On the other hand, Box proposed an empirical approach to the problem based upon monotone transformations of the performance characteristic(y). This paper develops procedures for parameter design optimization under the assumptions that the expected loss(not necessarily a mean squared error loss) is increasing with respect to the variance of the error in y, and that the mean of y satisfies certain conditions of adjustability. It turns out that the variance of the error in y can play the role of PerMIA, and it is further shown that the derived PerMIA can be adapted to the Box empirical procedure for the minimization of the expected loss in the original metric.

  • PDF

A Study on a Basis for the Selection of a Design for Quadratic Model Fits Fearing a Cubic Bias in Multilple Response Case

  • Bae, Wha-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 1995
  • In fitting a model, there always exists a discrepancy between the fitted model and the true functional relationship. In measuring this discrepancy, Box and Drapper (1959) used the criterion dividing the discrepancy into two parts which are the bias error part and the variance error one in single response case. In this paper, an optimum design which makes these two types of errors as small as possible is found by extending the Box and Drapper criterion to multiple response situation. Especially, a design is found to meat rotatability conditions when we fit a quadratic model to each response fearing cubic bias. Using the central composite design, an application of general results to a specific case is shown to help understanding the material.

  • PDF