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ABSTRACT

In fitting a model, there always exists a discrepancy between the
fitted model and the true functional relationship. In measuring this
discrepancy, Box and Draper (1959) used the criterion dividing the dis-
crepancy into two parts which are the bias error part and the variance
error one in single response case. In this paper, an optimum design
which makes these two types of errors as small as possible is found by
extending the Box and Draper criterion to multiple response situation.
Especially, a design is found to meet rotatability conditions when we fit
a quadratic model to each response fearing cubic bias. Using the central
composite design, an application of general results to a specific case is
shown to help understanding the material.
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1. INTRODUCTION

Suppose we have decided to fit a general linear model to the response over
a region of interest, say R. Then there would be a difference between the
fitted model and the true functional relationship (or feared relationship) over
the whole region of operability, say O.

Box and Draper(1959) used the weighted mean squared deviation from
the true response averaged over the region R and normalized with respect to
the number of observations and variance to measure the discrepancy. Box
and Draper criterion divided the discrepancy into two parts which are called
the bias error and the variance error. The former occurs from inadequacy of
the fitted model and the latter from the sampling error. In 1963, they used
this criterion in choosing a second order rotatable design for the single response
case. This idea can be extended to the multi-response case in finding a criterion
which measures the whole error amount from each response. If responses are
not correlated, the amount of error can be computed by summing up errors
which are computed separately, using Box and Draper criterion from each
response. But it would not be correct, if the responses are correlated.

As mentioned in Khuri(1988) and Khuri and Cornell(1987), there are a lot
of works relating the multiple response problem in many fields. But this type
of response surface design problem has not been studied much in multiple-
response situation. Kim and Draper(1994) discussed about choosing a design
for straight line fits to two correlated responses.

The problem to be considered here is (1)to find a proper form of a criterion
measuring the whole amount of discrepancy and (2)to obtain a suitable size
of a rotatable design which minimizes errors, especially in fitting a quadratic
model to each response fearing cubic terms as bias where there are several
correlated responses.

In section 2, the model form and the notations in multi-response linear
model are introduced and section 3 discusses the criterion measuring the dis-
crepancy in multi-response case. In section 4, the choice of a suitable design
which minimizes the errors presented in the criterion is examined and section
5 gives an application to a specific case using the central composite design. In
section 6, concluding remarks are shown.
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2. MODEL

Suppose that there are r responses measured on each of N experimental
runs and that the models for the r responses depend on all of the experimen-
tal setting of k predictors. Then the model to be fitted over R is represented as

Y = X3 + & (1)

where Y = (y1, -+, yr) withy, = (y15, -+, yn)s X = (x1/, x5 -+, xn")
with X" = (1, w1, Tuk; T, -+ Tk 5 Tu1Tuz, Tu(k—1)Tuk)’> Where 8 =
(Bus o+, Br) with B = (Bos, Brise 3 Bris Brvis =y Brkds Przis s Bk—es)'
fort=1,---,randu=1,---, N, wheree = (¢,-+,¢,) with ¢; = (€1, "+, €ng)
is an N X r error matrix and we assume that there are no common parameters
among the functions of responses. In fitting the model in multiple response
situation, the determinant criterion, which Box and Draper(1965) suggested,
minimizing |€'¢|, could be used. With no common parameter assumption, min-
imizing |€'e|, is exactly the same as the ordinary least squares estimation to
each response separately in fitting the model when we have the same design
structure for each response(see Box and Tiao(1973, pp.438-440)).

Assuming that the responses are correlated, the variance-covariance matrix
of each row vector of ¢ is X, where & = (p;;0;0;,7,7 = 1,---,r) with pi; =1
for i = j and cov(eui, €,;) = pijoi0; if u = v, 0 otherwise for any i,j =1,---,r
and u,v = 1,---, N. Hence Var(e) = £ ® In, an Nr x Nr matrix, where ®
means Kronecker product and Iy is an N x N identity matrix.

If we assume that the true or "feared” relationship over the whole region
of operability, say O, is represented as a quadratic model to each response,then

B(Y) = n = X@ + ZI, (2)
,Where n = (nla Ty 777') with n = (7711" Tty nNi)’a where Z = (zlla Tty ZN,)/
with zu’ = (-'L'u137 xu1$u22, Y zulzukz; Y xukaa xukmulza Ty xukxu(k—-l)2;
Ty1Tu2Ty3y ** ,$u(k—2)$u(k—1)$uk)l, and whereI' = (‘7’1, T ,‘Yr) withy; = (5111.:"

Brazis =+ Bukki 53 Brkksis Bravis -+ » Br(k=1)(k=1),3 Br23is* * *» Bk—2)(k—1)i)’ for
t=1,---,randu=1,---,N.

Some designs are preferred by the experimenter because they provide informa-
tions symmetrically. Hence the choice of the region of interest R, is usually
made to be symmetric. In this work, we shall choose R as a spherical region
of unit radius, a choice that is frequently made, sensible and convenient. Thus
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the center of R is at (0,---,0) and all points on or within the region satisfy
k
DBETEE- (3)
Jj=1
For this region,

2 2

r{ (5+1)+1}

JCOLICOREICT I

unless any §6; is odd where the value of integral is zero and I'(1/2) = y/7 and
I(n)=(n-1)l

There is no restriction that all the experimental runs need to be within R
in order to explore R. That is,some or all runs might be inside, and/or outside

R.

3. MODEL

3.1 Rotatability Conditions

The design we intend to consider is a second order design, because we fit
the second order fearing the third order bias. Especially, the second order
design minimizing the bias is shown to be a rotatable design(see Myers(1971,
p.214)). Hence we will now consider selecting the design from the class of the
second order rotatable design which minimizes the variance error and the bias

error simultaneously. Therefore a design needs to satisfy the following condi-
tions(see Box and Draper(1987, p.489));

N k
(1) N'lzxul‘sla:uz‘sz---xuk&" = 0, if any & is odd, for 26154,

=1

(2) N\, = quz,

u=1

N N
(3) 3N = Zw,f = 3qu12wum2, for |4 m=1,--,k.
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The condition (2) and (3) serve to define A, and A,.
3.2 The Form of Criterion

Let §(x) and n(x) be defined, respectively as fitted values of Y and the cor-
responding true mean values at the point x = (1,zy,---,z4)’. Then we want
to choose the design to minimize

3=NE" [ wix) E{¥(x) - n()}{F(x) - n(x)} dx, (5)

where w(x) is a weight function and dx = dz; - - - dz;. For the weight function,
there could be various types of weight functions to give varying importance
to some or other parts of the whole operable region. In this work, we shall
consider a uniform weight function within R and zero outside it, because it
is desired to weight response equally within R. Hence, w(x) = Q = 1/[, dx
in R and 0 elsewhere. In (5), the multiplication factor NX~! is the natural
extension of the N/o? factor for the multivariate case. The form of J can be
written as following;

J = NO [ X(X'X) 'xdx I,
/Rx( X) "'x dx
+ Nag-! /R '{x'(X'X)'X'Z — 2/} {x'(X'X) ' X'Z - 2}T dx
= V + B, (6)

where I, is an r X r identity matrix. From this, we see that the criterion J,
which is an r X r matrix, can be represented by the sum of the contributions
from the two types of errors where V explains the variance error and B the
bias error.

As shown in (6), the discrepancy between the fitted model and the feared
one explained in J, is divided into two parts in matrix form. How can one
“minimize J 7 which is an 7 x r matrix 7 Hence the trace of J, say tr(J), is
chosen among possible choices. (Computations on the determinant of J, and
on the maximum eigen value of J, showed very similar results.)

After completion of the appropriate calculations with rotatability condi-
tions having fifth order design moments zero, the form of V is
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V = NQ /R X(X'X) 'x dx I,

1 3(k — 1)

=I5 * sy e
(k+2)(k+4)0), + 3 — 2(k+4)8
s OnG 28 = 3k

= v(\g, 0) I, (7)

e

where § = 3)\;/ )\, and I; is an r x 7 identity matrix. We see that V depends
on # and ), as far as the design moments are concerned. On the other hand,
the form of B is represented as follows;

B = NOE-! /R I {x/(X'X)"'X'Z - '} {x'(X'X)'X'Z — 2}T dx

— -1tV / ’ _ / ’

= NX I‘{AQ/RxxdxA ZQ/szdx + Q/Rzzdx}l"
NEZ'I'QT (8)

,where A = (X'X)"1X'Z is an alias matrix and

Q = A'Q/ xx'dxA — 29/ zx'dx + Q/ zz'dx
R R R

Q:
Q:
= (9)

Q1

Q2
with

¢ D D D

D F F F

Q =|D F E :
. . F

D F F FE

and
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Qz = Ly/(k+2)(k +4)*(k + 6) = wiy,
where ¢ = k(k—1)(k—2) and Ijis a ¢ x ¢ identity matrix. If we define
U= {0 - 3/(k+4)}/9(k+2), W = 1/(k+2)(k+4)*k+6);

then C = 9U + 6(k+1)W, D = 3U — 6W, E = U + 2(k+

W, F U - 2W.
Hence
B = [E2*{Byj ¢, = 1,---, r}, an r Xr matrix, (10)
, where
E_l = H a,-2|2|‘1{a"j}
i=1
= |Z["{e¥"} fori,j =1,---,r, (11) —
and .
B; = ZN|E|"0“‘I"QI‘
s=1
r (k+4)Q,; — 2P,
= |EI* P,b(8 , 12
I |;[ J()+(k+2)(k+4)2(k+6)] ( )
with
P,; = (3aqnrs + a1+ + Qikk,s) (30111, + 225 + -+ + Qrgr ;)
+ +
(Bcrkkk,s + ki1, + -+ + Qi(ko1y(b-1),s) (Bkki; + Qa1
+ 0+ ok-1)(k-1),5) (13)
and
Qsi = 2(3011,s011,5 + 0122500225 + -+ + Q1pk s C1kk )
+ +

2(30kkk,s0kkk,; + Cki1e@k115 + o Qh(ko1)(k=1),sQhk(k=1)(k-1).7)
+ (23601235 + 0+ Crog)k-1)ksQk-2)k-1)k5) > (14)

, where b(6) = %’;—;’ﬂzand Qmni = %, for ,m,n =1,--- k and
z.»j:l""ar'
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Hence the form of the tr(J) criterion is written as following,

tr(J) = rv(X;,0) + tr(B)

(15)
, where v();,8) is as in (7) and
r(B) = 5SS (Paib(8) + {(k+4)Qui ~ 2Pui}/(k+2)(k+4)%(k+8)]
i=1s=1
= Pb(8) + {(k+4)Q — 2P}/(k+2)(k + 4)*(k +6) (16)

with P = TI_ 3, [Py and @ = Yo, E0o, [E27]Qs
Finally, tr(J) is shown to be divided into two parts, which are the variance
error part and the bias error one. So (15) is wrritten as following;

tr(J) = v* 4 b

(17)
. where v* = r v(\y,0) represents the variance error part and b = tr(B)
the bias error one.

- 3.3 Minimization of the tr(J) Criterion

Using the form founded in section 3.2, the aim is to find a proper design
which makes the gap, which can be measured using the form in (15), between
the fitted model and the feared one as small as possible

In order to minimize (15), we fix 0, differentiate (15) with respect to A,
equate to 0, and we then have

0 d
8_/\2tT(J) = ra—/\zv()\g,ﬂ) = 0. (18)
Solving (18) for A, gives
.y —3k{2(k +4)0 +3(k + 1) + /(%)) "
2= [3{202(k + 2)(k + 4) — 6k(k + 4)0 — 9k(k — 1)}] ’ (19)
where

(%) = 6[{2(k+4)0+3(k+1)}{(k+2)*(k+4)0° — 6k(k+4)0 +9k}].
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If we substitute in (15) for A, from (19), differentiate with respect to 8, equate
to 0, we obtain

0wy, 0)ddy | (M) | dir(B)

ax, do 06 a =0
or equivalently,
Ov(A,,0) dir(B) ) Iv(rg,0)
50 + w = 0, since - 0 (20)
, where
ov()g,0) -3 [(k-— 1) | k(k+4)A{(k +2)A; — 2} +(k+2)]
90 (k+4)), 202 (k +2)0 — 3kA,?
, and |
dir(B) 2 3
do 9(k+2){0 (k+4)}P”

, where P in the ¢r(J) criterion is denoted by P,,.
So (20) implies that

27r(k + 2) [(k -1) L bk Dh{(k +2)As — 2} + (k + 2)

P = ona{(k + 48 - 3} 202 {(k 12)0 — 3E0,)2 ] (21)

, where A3 = () as given in (19).

Hence, with specified values of P,. , we can always get the optimum value
of 8 using (21) in the tr(J) criterion. Via these values of 8, the optimum values
of Ay can be obtained from (19).

4. RESULTS

4.1 General Results

With specified values of a’s and p’s, P, is determined and as shown in
section 3.3, the optimum values of § and A, are obtained. That is, the design
is depending on the second order and the fourth order of design moments. If
welet A = 0/X; = 3X4/);%, then A will estimate the kurtosis of the design.
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When the a’s are too small or too large(which leads to either the variance
error or bias error dominant cases, respectively), the optimum design size is
not sensitive to changes in the correlations.

FIGURE 4.1 shows the changes in the optima of A and v/, depending on
the specified values of P,, for the various values of r’s and k’s. From FIGURE
4.1, we see that with the same value of k’s, we have slightly bigger values of
optimum VA, and ) as we increase the number of responses. On the other

<
o — r=2, k=1
[P =2, k=2
A e r=3, k=1
2 B L e e e . =3, k=2
o k=2
Q- o SR N =
- k=1
-
1 R
!
\\k;-— ‘1—):2 k=1
- e e i W2 e v TS L v s i R et ————
pag k=2
<
[e]
T l ! ' l !
0 1000 2000 3000 4000 5000

Prr

Figure 4.1. Change of optimum /}; and A as P, change
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hand, with the same number of responses, we have smaller values of VA, and
bigger values of A as we increase the number of predictors, by a much wider
margins.

The effect of correlations can be checked for the specified number of re-
sponses. Hence, in order to examine the influence of correlations, the case
with r = 2 and k£ = 2 is studied in the next section.

4.2 The Case with r=2 and k =2

To examine the sensitivity of the size of design with respect to changes in
the correlation, we have chosen |a| < 1. By the definition of the a’s, this
specification of the a’s means that the ratio of each coefficient of the cubic
curvature to the variation of g;, which is the mean of the ** response, is less
than or equal to 1 in absolute value. When the a’s are such that |o| < 1,
even with the maximum value of P,,, the ratio of variance error and the bias
one, v*/b*, lies between 2 and 6 for various values of correlations. This means
that the variance error contribution is 2 to 6 times as big as the bias error
contribution. For a wider range of the a’s, this ratio will be reduced. For
example, with |a|] < 2, v*/b* ranges between 1.5 and 4 when the P, attains
maximum values. :

Table 4.1 shows the optimum values of v/A; and A with respect to the
changes in the correlation, assuming @ = 1. As p moves towards the positive
side, bias gets smaller so that the design gets larger.

Table 4.1. Optimum Values of /A; and A as p change

P Ptr \/A_Z A
-0.9 640 0.593 2.102
-0.7 213 0.632 2.276
-0.5 128 0.654 2.386
-0.3 91 0.668 2.464
-0.1 71 0.680 2.523
0.0 64 0.684 2.558
0.1 58 0.691 2.595
0.3 49 0.699 2.640
0.5 43 0.705 2.676
0.7 38 0.712 2.720
0.9 34 0.718 2.755

41
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5. AN APPLICATION

Suppose that there are r = 2 and k = 2. Suppose further that for each
response, we fit a second order model over R, which is the circular region
with unit radius, but fear that cubic bias may be present. If we employ the
central composite design, then the design points consist of three portions,
namely, the cube portion, the star portion, and the center points. With
k = 2, these design points are specified as (s, s), (s,—s), (—s, $),(—s,—3),
(V2s, 0), (—v/2s,0), (0,v/2s), (0, —/2s), and (0, 0), ---,(0, 0), respec-
tively. If we define the number of center points by ng, then the total number
of design pointsis N = 8 + ng. Then

A2 = 8s%/(8 + ny) (22)
3\ = 125*/(8 + ny) (23)

So, using the values of A, and A4, we can determine the proper values for
s and nyg. '

If we consider the case when the a’s are all 1, then the values of optimum
A and /A, shown in Table 4.1 can be used in finding the values for s and nq.
Since A = 3\4/);%, using (22) and (23), we obtain

s = \/(2/3)) and no = (16/3)A — 8 (24)

By (24) and the results of Table 4.1, the values for s and ng are thus
obtained and Table 5.1 shows these results as p varies.

From Table 5.1, we see that as the bias gets larger(p moves to the negative
side) the design radius, s, gets smaller and we need fewer center points.

We see that, as we expect less bias error, we add more center points to
provide a better estimate of the error variation and we spread the other points
further from the origin, even outside of R. When the bias error is the main
contribution to the error, however, the design contracts into R and we need
only a few center points (3 or 4). When the bias error is dominant, the optimum
values of s and ng are .578 and 2, respectively.



Whasoo Bae

Table 5.1 Optimum Values of ng and s as p changs (a = 1)

p no s
-0.9 3 0.702
-0.7 4 0.789
-0.5 ) 0.826
-0.3 G} 0.856
-0.1 ) 0.883
0.0 6 0.894
0.1 6 0.909
0.3 6 0.927
0.5 6 0.942
0.7 7 0.959
0.9 7 0.973

6. CONCLUDING REMARKS

The optimum design was found by minimizing ¢r(J), whereJ = V + B.
The correlations of the responses appear only in matrix B, the bias error part
so that they influence only the bias error, interacting with the values of the
a’s. The influence of the correlation coefficients become weaker and weaker
as the design situation becomes close to either the variance error dominant
one or the bias error dominant one but, except these two extreme cases, the
correlation coefficients influence the bias, which in turn affect the size of the
design.

Using designs satisfying the conditions of second order rotatability, we de-
termined the optimum size of the second order and the fourth order design
moments, A; and Ay. The optimum design size can be specified using /A, and
A = 3X,/);%, which shows the kurtosis of the design.
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