• Title/Summary/Keyword: error term

Search Result 1,006, Processing Time 0.024 seconds

Development of a Hybrid Exponential Forecasting Model for Household Electric Power Consumption (가정용(家庭用) 전력수요예측(電力需要豫測)을 위(爲)한 혼합지표(混合指表) 모델의 개발(開發))

  • Hwang, Hak;Kim, Jun-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 1981
  • This paper develops a short term forecasting model for household electric power consumption in Seoul, which can be used for the effective planning and control of utility management. The model developed is based on exponentially weighted moving average model and incorporates monthly average temperature as an exogeneous factor so as to enhance its forecasting accuracy. The model is empirically compared with the Winters' three parameter model which is widely used in practice and the Box-Jenkins model known to be one of the most accurate short term forecasting techniques. The result indicates that the developed hybrid exponential model is better in terms of accuracy measured by average forecast error, mean squared error, and autocorrelated error.

  • PDF

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

Performance Analysis of INS/GPS Integration System (INS/GPS 결합방식에 따른 성능분석)

  • Park, Young-Bum;Lee, Jang-Gyu;Park, Chan-Gook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2433-2435
    • /
    • 2000
  • Inertial Navigation System(INS) provides short-term accurate navigation solution but its error grows with time due to integration characteristics. Meanwhile, Global Positioning System(GPS) provides long-term stable solution but it has poor error characteristics in high dynamic region. So for its synergistic relationship, an integrated INS/GPS systems has been widely used as an advanced navigation system. Generally, two kinds of integration method are used. One is loosely coupled mode which uses GPS-derived position and velocity as measurements in an integrated Kalman filter. The other is tightly coupled one which uses pseudorange and pseudorange rate as Kalman filter measurements. In this paper the system error models and observation models for two kinds of integrated systems are derived, respectively, and their performance are compared through Monte-Carlo simulations.

  • PDF

Implementation of an Operator Model with Error Mechanisms for Nuclear Power Plant Control Room Operation

  • Suh, Sang-Moon;Cheon, Se-Woo;Lee, Yong-Hee;Lee, Jung-Woon;Park, Young-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.349-354
    • /
    • 1996
  • SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation.

  • PDF

24 hour Load Forecasting using Combined Very-short-term and Short-term Multi-Variable Time-Series Model (초단기 및 단기 다변수 시계열 결합모델을 이용한 24시간 부하예측)

  • Lee, WonJun;Lee, Munsu;Kang, Byung-O;Jung, Jaesung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.493-499
    • /
    • 2017
  • This paper proposes a combined very-short-term and short-term multi-variate time-series model for 24 hour load forecasting. First, the best model for very-short-term and short-term load forecasting is selected by considering the least error value, and then they are combined by the optimal forecasting time. The actual load data of industry complex is used to show the effectiveness of the proposed model. As a result the load forecasting accuracy of the combined model has increased more than a single model for 24 hour load forecasting.

Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy (에너지 인터넷을 위한 GRU기반 전력사용량 예측)

  • Lee, Dong-gu;Sun, Young-Ghyu;Sim, Is-sac;Hwang, Yu-Min;Kim, Sooh-wan;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.120-126
    • /
    • 2019
  • Recently, accurate prediction of power consumption based on machine learning techniques in Internet of Energy (IoE) has been actively studied using the large amount of electricity data acquired from advanced metering infrastructure (AMI). In this paper, we propose a deep learning model based on Gated Recurrent Unit (GRU) as an artificial intelligence (AI) network that can effectively perform pattern recognition of time series data such as the power consumption, and analyze performance of the prediction based on real household power usage data. In the performance analysis, performance comparison between the proposed GRU-based learning model and the conventional learning model of Long Short Term Memory (LSTM) is described. In the simulation results, mean squared error (MSE), mean absolute error (MAE), forecast skill score, normalized root mean square error (RMSE), and normalized mean bias error (NMBE) are used as performance evaluation indexes, and we confirm that the performance of the prediction of the proposed GRU-based learning model is greatly improved.

Short-Term Load Forecast for Summer Special Light-Load Period (하계 특수경부하기간의 단기 전력수요예측)

  • Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.482-488
    • /
    • 2013
  • Load forecasting is essential to the economical and the stable power system operations. In general, the forecasting days can be classified into weekdays, weekends, special days and special light-load periods in short-term load forecast. Special light-load periods are the consecutive holidays such as Lunar New Years holidays, Korean Thanksgiving holidays and summer special light-load period. For the weekdays and the weekends forecast, the conventional methods based on the statistics are mainly used and show excellent results for the most part. The forecast algorithms for special days yield good results also but its forecast error is relatively high than the results of the weekdays and the weekends forecast methods. For summer special light-load period, none of the previous studies have been performed ever before so if the conventional methods are applied to this period, forecasting errors of the conventional methods are considerably high. Therefore, short-term load forecast for summer special light-load period have mainly relied on the experience of power system operation experts. In this study, the trends of load profiles during summer special light-load period are classified into three patterns and new forecast algorithms for each pattern are suggested. The proposed method was tested with the last ten years' summer special light-load periods. The simulation results show the excellent average forecast error near 2%.

The Behavior of the Term Structure of Interest Rates with the Markov Regime Switching Models (마코프 국면전환을 고려한 이자율 기간구조 연구)

  • Rhee, Yu-Na;Park, Se-Young;Jang, Bong-Gyu;Choi, Jong-Oh
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.3
    • /
    • pp.203-211
    • /
    • 2010
  • This study examines a cointegrated vector autoregressive (VAR) model where parameters are subject to switch across the regimes in the term structure of interest rates. To employ the regime switching framework, the Markov-switching vector error correction model (MS-VECM) is allowed to the regime shifts in the vector of intercept terms, the variance-covariance terms, the error correction terms, and the autoregressive coefficient parts. The corresponding approaches are illustrated using the term structure of interest rates in the US Treasury bonds over the period of 1958 to 2009. Throughout the modeling procedure, we find that the MS-VECM can form a statistically adequate representation of the term structure of interest rate in the US Treasury bonds. Moreover, the regime switching effects are analyzed in connection with the historical government monetary policy and with the recent global financial crisis. Finally, the results from the comparisons both in information criteria and in forecasting exercises with and without the regime switching lead us to conclude that the models in the presence of regime dependence are superior to the linear VECM model.

A Study of Estimation Method for Auto-Regressive Model with Non-Normal Error and Its Prediction Accuracy (비정규 오차를 고려한 자기회귀모형의 추정법 및 예측성능에 관한 연구)

  • Lim, Bo Mi;Park, Cheong-Sool;Kim, Jun Seok;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.109-118
    • /
    • 2013
  • We propose a method for estimating coefficients of AR (autoregressive) model which named MLPAR (Maximum Likelihood of Pearson system for Auto-Regressive model). In the present method for estimating coefficients of AR model, there is an assumption that residual or error term of the model follows the normal distribution. In common cases, we can observe that the error of AR model does not follow the normal distribution. So the normal assumption will cause decreasing prediction accuracy of AR model. In the paper, we propose the MLPAR which does not assume the normal distribution of error term. The MLPAR estimates coefficients of auto-regressive model and distribution moments of residual by using pearson distribution system and maximum likelihood estimation. Comparing proposed method to auto-regressive model, results are shown to verify improved performance of the MLPAR in terms of prediction accuracy.