• Title/Summary/Keyword: error sensor

Search Result 2,220, Processing Time 0.025 seconds

A Disk-type Capacitive Sensor for Five-dimensional Motion Measurements (5 차원 변위 측정용 원판형 정전용량 센서)

  • Ahn, Hyeong-Joon;Park, Jung-Ho;Um, Chang-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.655-662
    • /
    • 2007
  • This paper presents a disk-type capacitive sensor for simultaneous measurement of five-dimensional motions of a target. The sensor can be manufactured with a printed circuit board (PCB) such that the sensor can be integrated with its electronics in a single PCB board, whereby the manufacturing costs is considerably reduced. The sensor is optimally designed through an error analysis of possible mechanical errors. Furthermore, the sensor can correct the horizontal motion measurement errors due to the sensor installation tilting error. A proto-type PCB sensor, electronics and a test rig were built, and the effectiveness of the developed sensor was proved through experiments.

  • PDF

Development of Force Sensors for the Fingers of an Intelligent Robot's Hand (지능형 로봇손을 위한 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • This paper describes a design and manufacture of a two-axis force sensor and a single-axis force sensor for the fingers of an intelligent robot's hand. The robot's finger is composed of a two-axis force sensor, a first knuckle, a single-axis force sensor, a second knuckle, a spring, a motor of first knuckle, a motor of second knuckle, and so on. The two-axis force sensor attached to the first knuckle and the single-axis force sensor attached to the second knuckle were designed and manufactured, and the characteristics test of two sensors was carried out. As a test results, the interference error of the two-axis force sensor was less than 0.68%, the repeatability error of each sensor was less than 0.02%, and then the non-linearity was less than 0.03%. It is thought that the sensors can be used for the fingers of the intelligent robot's hand for rehabilitation exercise of finger patients.

Gravity Compensation Techniques for Enhancing Optical Performance in Satellite Multi-band Optical Sensor (위성용 다중대역광학센서의 광학 성능 향상을 위한 자중보상기법)

  • Do-hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • This paper discusses a gravity compensation technique designed to reduce wavefront error caused by gravity during the assembly and alignment of satellite multi-band optical sensor. For this study, the wavefront error caused by gravity was analyzed for the opto-mechanical structure of multi-band optical sensor. Wavefront error, an indicator of optical performance, was computed by using the displacements of optics calculated through structural analysis and optical sensitivity calculated through optical analysis. Since the calculated wavefront error caused by gravity exceeded the allocated budget, the gravity compensation technique was required. This compensation technique reduces wavefront error effectively by applying the compensation load to the appropriate position of the housing tube. This method successfully meets the wavefront error budget for all bands. In the future, a gravity compensation equipment applying this technique will be manufactured and used for assembly and alignment of multi-band optical sensor.

Design of Three-Axis Force/Torque Sensor for Rehabilitation Robot (재활로봇용 3축 힘/토크센서 설계)

  • Jung, Jae-Hyun;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, we described the design of a three-axis force/torque sensor for measuring the force and torque in a lower-limb rehabilitation robot. The three-axis force/torque sensor is composed of Fx force sensor, Fz force sensor and Tz torque sensor. The sensing element for Fx force sensor and Tz torque sensor is used in a two-step parallel plate beam, and that of Fz force sensor is used in a parallel plate beam. The rated loads of Fx force sensor, Tz torque sensor and Fz force sensor are 300 N, 15 N m and 100 N, respectively. The three-axis force/torque sensor was designed using the finite element method, and manufactured using strain-gauges. The three-axis force sensor was further characterized. As a result, the interference error of the three-axis force/torque sensor was < 1.24%, the repeatability error of each sensor was < 0.03%, and the non-linearity was < 0.02%.

Design of Structure of Four-Axis Force/Torque Sensor with Parallel Step Plate Beams (4축 힘/토크 센서의 구조 설계)

  • Lee, Kyung-Jun;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1147-1152
    • /
    • 2014
  • This paper describes the design of a four-axis force/torque sensor with PSPBs (Parallel Step Plate Beams). The sensor is composed of eight PSPBs, a force/torque transmitting block, and fixing blocks. It is designed by using the FEM(Finite Element Method), and fabricated by using strain gages. The characteristic tests of the sensor are carried out, and the interference error, repeatability error, and non-linearity error are less than 2.21%, 0.03% and 0.03%. Furthermore, the structure of the four-axis force/torque sensor with PSPBs has a larger rated capacity than that of the four-axis force/torque sensor with PPBs under the same overall sensor size and the same rated output. It is thought that the developed four-axis force/torque sensor with PSPBs can be used for measuring the forces and torques in an intelligent robot, automation devices, etc.

A Study on MBES Error Data Removing using Motion Sensor (Motion Sensor를 이용한 MBES 오측자료 제거 연구)

  • Kang, Moon-Kwon;Choi, Yun-Soo;Chang, Min-Chol;Yoon, Ha-Su
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Sounding data is the essential source for the safety of ships navigation system, and fundamental to the reasonable usage and maintenance of the ocean as well. As IT tech, positioning equipment such as GPS and INS, echo sounder are developed, recently, the precise submarine topography database bas been built by Multi-Beam Echo Sounder. However, MBES data includes some inevitable error caused by several factor, and some data have errors where the terrain is wobble. The error, which causes the $moir\acute{e}$ pattern error is the main factor hindering the accuracy of MBES data results, and therefore it is necessary to figure out the main cause of the error for the improvement of the accuracy by removing error data. On this research, the main cause of the error data is studied by analyzing motion sensor value of data including the $moir\acute{e}$ pattern error. Thus, as the result of examination, it turns out that the $moir\acute{e}$ pattern error is related to the standard deviation of Roll, and error data values are results of the non-correspondence between Swath data and Roll values caused by the drastic change of Roll values. Accordingly, the error data is removed by comparing between the gradient of Swath data and Roll values. Finally, as the result of removing error data, it is expected to be able to estimate the quality of MBES using the standard deviation of Motion sensor's Roll value, and calculate the additive error factor, which minimize non-corresponding data, and also this research must be contributed to improve the accuracy of sounding for small vessels with lots of motion in the bad circumstance for navigation.

Odometry error correction by Gyro sensor for mobile robot localization (이동로봇의 Localization을 위한 Gryo sensor에 의한 Odometry Error 보정에 관한 연구)

  • Park, Shi-Na;Ro, Young-Shick;Choi, Won-Tai;Hong, Hyun-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.597-599
    • /
    • 2005
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

  • PDF

A Study on Measuring the Shape of Transparent Objects using the Focal Area of Hologram Optical System (홀로그램 광학계의 초점영역을 이용한 투명 물체의 형상 측정에 관한 연구)

  • Byun, Jong-Hwan;Ryu, Young-Kee;Oh, Choon-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.600-602
    • /
    • 2005
  • Recently image display devices have become large and high quality. To control the qualities of the component, measurements of the shape and thickness of a plate glass has been required. In order to measure the shape of the specular objects, Non-Contact Optical Sensor using Hologram laser unit was proposed. The sensor has a optical system that is composed of a Hologram laser and objective lens used for CD Player, and the sensor showed high performance for measuring the shape and thickness of transparent plates. In the sensor, the temperature of the sensor body is controlled by TEC(Thermoelectric Cooler). In this paper, we proposed the measuring method to make better performance of sensor using focus error signal of a hologram laser unit. It can measure the shape and the thickness of transparent objects with the s-type focus error signal which is generated by the sensor while it goes to the object.

  • PDF

Sliding Window Filtering for Ground Moving Targets with Cross-Correlated Sensor Noises

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.146-151
    • /
    • 2019
  • This paper reports a sliding window filtering approach for ground moving targets with cross-correlated sensor noise and uncertainty. In addition, the effect of uncertain parameters during a tracking error on the model performance is considered. A distributed fusion sliding window filter is also proposed. The distributed fusion filtering algorithm represents the optimal linear combination of local filters under the minimum mean-square error criterion. The derivation of the error cross-covariances between the local sliding window filters is the key to the proposed method. Simulation results of the motion of the ground moving target a demonstrate high accuracy and computational efficiency of the distributed fusion sliding window filter.

Design of a Two-Axis Force Sensor for Measuring Arm Force of an Upper-Limb Rehabilitation Robot (상지재활로봇의 팔힘측정용 2축 힘센서 설계)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 2015
  • This paper describes the design of a two-axis force sensor with two step plate beams for measuring forces in an upper-limb rehabilitation robot. The two-axis force sensor is composed of a Fz force sensor and a Ty torque sensor. The Fz force sensor measures the force applied to a patient's arm pushed by a rehabilitation robot and the force of patient's arm. The Ty torque sensor measures the torque generated by a patient's arm motion in an emergency. The structure of sensor is composed of a force transmitting block, two step plate beams and two fixture blocks. The two-axis force sensor was designed using FEM (Finite Element Method), and manufactured using strain-gages. The characteristics test of the two-axis force sensor was carried out. as a test results, the interference error of the two-axis force sensor was less than 1.24%, the repeatability error of each sensor was less than 0.03%, and the non-linearity was less than 0.02%.