• 제목/요약/키워드: error range

검색결과 2,811건 처리시간 0.034초

Digital Phase-Locked Loops의 위상 포착 관정에 관한 연구 (Acquisition Behavior of a Class of Digital Phase-Locked Loops)

  • 안종구;은종관
    • 대한전자공학회논문지
    • /
    • 제19권5호
    • /
    • pp.55-67
    • /
    • 1982
  • 본 논문에서는 Reddy와 Gupta가 제안한 1차 및 2차 디지탈 phase-locked loops(DPLL)에 관하여, 잡음이 없는 상태에서 위상 포착 과정을 연구하여 새로운 결과를 얻었다. 먼저 양자화단계 L과 위상 오차 상태수 N이 위상 포착 과정에서 중요한 위치를 차지하는 것을 보였다. 고정된 L단계 양자화 장치에서, N이 증가함에 따라, 포착 시간은 증가하고 동기 구속 범위는 감소하는 반면, 정상 상태에서의 위상 오차편차는 감소한다. L이 증가하는 경우에는, 포착 시간은 감소하고 동기 구속 범위가 증가하며, 또한 정상 상태에서의 위상 오차는 L의 변화에 거의 영향을 받지 않는다. 포착 과정에서 루프 필터가 미치는 영향에 관해서도 연구되었다. 필터의 변수를 크게 할수록 포착 시간을 줄이며, 구속 범위를 증가시킬 수 있다. 그러나 이 경우 정상 상태에서의 위상 오차 편차는 증가된다. 분석 결과들은 컴퓨터 시뮬레이션에 의해 입증했다.

  • PDF

중국 성인여성의 직접계측과 3D Body scanning 치수 비교 연구 (Comparison of Size between direct-measurement and 3D body scanning)

  • 차수정
    • 패션비즈니스
    • /
    • 제16권1호
    • /
    • pp.150-159
    • /
    • 2012
  • This study intend to analyze differences between 3D body scanning sizes and direct measurement sizes of same subjects. The subjects of study are female students of university in China. 3D data analyze as a 3D Body Measurement Soft System. The conclusion found is as below: In case of circumferences, error between direct-measurement size and 3D body scanning size is from 4.9mm to 62.2mm. The neck circumference size of directmeasurement is bigger than 3D body scanning size. The height error range is from 0.6mm to 51mm. Height of underbust, waist and hip are that direct-measurement sizes are higher than 3D body scanning sizes. Gap of width is from 3.8mm to 21.9mm. The gap range is too narrow relatively to others. Only direct-measurement size of neck width is wider than 3D body scanning size. Error range of length is from 0.3mm to 41.8mm. 3D body scanning sizes of lateral neck to waistline, upperarm length, arm length, neck shoulder point to breast point, shoulder center point to breast point, lateral shoulder to breast point are longer than direct-measurement sizes. They have a negative margin of error. I intend to set up same measurement point between direct-measurement and 3D body scanning but they have some errors because direct-measurement point is applied by a person. 3D body scanning measurement point is settled by automatic system. A measurement point of direct-measurement and 3D body scanning isn't unite. So we need to make a standard of setting up measurement points.

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF

Error Accumulation and Transfer Effects of the Retrieved Aerosol Backscattering Coefficient Caused by Lidar Ratios

  • Liu, Houtong;Wang, Zhenzhu;Zhao, Jianxin;Ma, Jianjun
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.119-124
    • /
    • 2018
  • The errors in retrieved aerosol backscattering coefficients due to different lidar ratios are analyzed quantitatively in this paper. The actual calculation shows that the inversion error of the aerosol backscattering coefficients using the Fernald backward-integration method increases with increasing inversion distance. The greater the error in the lidar ratio, the faster the error in the aerosol backscattering coefficient increases. For the same error in lidar ratio, the smaller actual aerosol backscattering coefficient will get the larger relative error of the retrieved aerosol backscattering coefficient. The errors in the lidar ratios for dust or the cirrus layer have great impact on the retrievals of backscattering coefficients. The interval between the retrieved height and the reference range is one of the important factors for the derived error in the aerosol backscattering coefficient, which is revealed quantitatively for the first time in this paper. The conclusions of this article can provide a basis for error estimation in retrieved backscattering coefficients of background aerosols, dust and cirrus layer. The errors in the lidar ratio of an aerosol layer influence the retrievals of backscattering coefficients for the aerosol layer below it.

최대 다이버시티 이득을 얻기 위한 복호 후 전달 (Decode-and-Forward) 릴레이 시스템의 위치에 관한 연구 (Relay Position in Decode-and-Forward Relay Systems to Achieve Full Diversity Gain)

  • 곽경철;서우현;홍대식
    • 한국통신학회논문지
    • /
    • 제32권12A호
    • /
    • pp.1260-1266
    • /
    • 2007
  • 송신국 (Source) 과 릴레이 사이의 중계 링크에서 발생한 오류는 복호 후 전달(decode-and-forward, DF) 릴레이 시스템의 성능을 제한하고 릴레이와의 협력으로 얻을 수 있는 최대 다이버시티 이득을 얻지 못 하도록 한다. 또한, 전체 복호 후 전달 릴레이 시스템의 오류 확률은 릴레이와 수신국 (destination)에서 발생한 에러의 합으로 표현되므로 최대 다이버시티 이득을 얻기 위해서는 중계 링크의 오류 확률은 수신국에서 오류 전파 없이 maximum ratio combining (MRC)을 적용한 오류 확률보다 작아야 한다. 이러한 조건을 만족시키는 릴레이의 위치 범위에 릴레이가 위치하게 되면 최대 다이버시티 이득을 얻을 수 있다. 뿐만 아니라 본 논문에서는 최대 다이버시티 이득을 얻으면서 릴레이의 전송파워를 최소화하는 위치를 정하므로 최대 다이버시티 이득을 얻는 다는 전제하에서 전체 시스템이 최소의 파워를 사용할 수 있도록 한다. 이를 입증하기 위해 본 논문은 전체 오류 확률의 분석과 모의실험들을 수행 한다.

Performance Analysis of GNSS Residual Error Bounding for QZSS CLAS

  • Yebin Lee;Cheolsoon Lim;Yunho Cha;Byungwoon Park;Sul Gee Park;Sang Hyun Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.215-228
    • /
    • 2023
  • The State Space Representation (SSR) method provides individual corrections for each Global Navigation Satellite System (GNSS) error components. This method can lead to less bandwidth for transmission and allows selective use of each correction. Precise Point Positioning (PPP) - Real-Time Kinematic (RTK) is one of the carrier-based precise positioning techniques using SSR correction. This technique enables high-precision positioning with a fast convergence time by providing atmospheric correction as well as satellite orbit and clock correction. Currently, the positioning service that supports PPP-RTK technology is the Quazi-Zenith Satellite System Centimeter Level Augmentation System (QZSS CLAS) in Japan. A system that provides correction for each GNSS error component, such as QZSS CLAS, requires monitoring of each error component to provide reliable correction and integrity information to the user. In this study, we conducted an analysis of the performance of residual error bounding for each error component. To assess this performance, we utilized the correction and quality indicators provided by QZSS CLAS. Performance analyses included the range domain, dispersive part, non-dispersive part, and satellite orbit/clock part. The residual root mean square (RMS) of CLAS correction for the range domain approximated 0.0369 m, and the residual RMS for both dispersive and non-dispersive components is around 0.0363 m. It has also been confirmed that the residual errors are properly bounded by the integrity parameters. However, the satellite orbit and clock part have a larger residual of about 0.6508 m, and it was confirmed that this residual was not bounded by the integrity parameters. Users who rely solely on satellite orbit and clock correction, particularly maritime users, thus should exercise caution when utilizing QZSS CLAS.

습식 식각에 의한 실리콘 웨이퍼의 표면 및 전기적 특성변화(2) - 표면거칠기와 전기적 특성의 상관관계 - (Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(2) - Relationship between Surface Roughness and Electrical Properties -)

  • 김준우;강동수;이현용;이상현;고성우;노재승
    • 한국재료학회지
    • /
    • 제23권6호
    • /
    • pp.322-328
    • /
    • 2013
  • The relationship the between electrical properties and surface roughness (Ra) of a wet-etched silicon wafer were studied. Ra was measured by an alpha-step process and atomic force microscopy (AFM) while varying the measuring range $10{\times}10$, $40{\times}40$, and $1000{\times}1000{\mu}m$. The resistivity was measured by assessing the surface resistance using a four-point probe method. The relationship between the resistivity and Ra was explained in terms of the surface roughness. The minimum error value between the experimental and theoretical resistivities was 4.23% when the Ra was in a range of $10{\times}10{\mu}m$ according to AFM measurement. The maximum error value was 14.09% when the Ra was in a range of $40{\times}40{\mu}m$ according to AFM measurement. Thus, the resistivity could be estimated when the Ra was in a narrow range.

A Novel Multihop Range-Free Localization Algorithm Based on Reliable Anchor Selection in Wireless Sensor Networks

  • Woo, Hyunjae;Lee, Chaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.574-592
    • /
    • 2016
  • Range-free localization algorithm computes a normal node's position by estimating the distance to anchors which know their actual position. In recent years, reliable anchor selection research has been gained a lot of attention because this approach improves localization accuracy by selecting the only subset of anchors called reliable anchor. The distance estimation accuracy and the geometric shape formed by anchors are the two important factors which need to be considered when selecting the reliable anchors. In this paper, we study the relationship between a relative position of three anchors and localization error. From this study, under ideal condition, which is with zero localization error, we find two conditions for anchor selection, thereby proposing a novel anchor selection algorithm that selects three anchors matched most closely to the two conditions, and the validities of the conditions are proved using two theorems. By further employing the conditions, we finally propose a novel range-free localization algorithm. Simulation results show that the proposed algorithm shows considerably improved performance as compared to other existing works.