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Acquisition Behavior of a Class of Digital
Phase-Locked Loops
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Abstract

In this paper new results relating to the acquisition behavior of a class of first- and second-
order digital phase-locked loops (DPLL) originally proposed by Reddy and Gupta are
presented in the absence of noise. It has been found that the number of quantization levels
L and the number of phase error states N play important roles in acquisition. For a given
L-level quantizer, as N increases, the acquisition time increases, and the lock range decreases.
However, the deviation of the steady state phase error decreases in this case. When L in-
creases, the acquisition time decreases, and the lock range increases. However, variation of L
affects little for the steady state phase error. In addition, the effects of a loop filter on
acquisition have also been considered. One can get smaller acquisition time and larger lock
range as the filter parameter value becomes larger. However, deviation of the steady state
phase error increases in that case. Analytical results have been verified by computer simula-

tion.

I. Introduction
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digitalized, and this trend will continue. Digital
systems have in general the advantages of re-
duced size and cost, and increased reliability
and stability compared with their analog
counterparts. Therefore, the use of a digital
phase-locked loop (DPLL) can avoid the
problems that are encountered in an analog
phase-locked loop (APLL), such as voltage
controlled oscillator (VCO) drift, phase de-
tector inaccuracy, and loop filter saturation
problems. However, some inherent disadvantages
of digital circuitry, that is, quantization and
round off error, and overflow problem, exist
also in DPLL. Nevertheless, considering the
advantages of the DPLL, these disadvantages
are not serious problems.

Although APLL has been studied extensively
in the past twenty years, little analytical study
on DPLL’s has been done despite of its in-
creasingly widespread usage. Accordingly, the
general acquisition behavior of a DPLL is not
well understood.

Several different forms of DPLL have so far
been proposed. A DPLL system was proposed
and studied by Gill and Gupta[1 ], and later by
Reddy and Gupta[zl. Additional work was
done by Weinberg and Liu'3' Another DPLL
system with a square-wave input was analyzed

by Cessna and Levy["’]
(5]

, and later by Yamamoto
and Mor Random-walk sequential loop
filters were used in their system. The transient
and steady state analyses were performed by
Cessna and Levy, assuming that the input
signal was corrupted by additive white Gaussian
noise.

Another DPLL was studied by Pasternack
and Whalin!®! . This DPLL runs with a high
degree of stability. Tracking of the Holmes’
loop[” is accomplished by sampling the input
waveform at zero crossings, accumulating these
samples, and incrementing the phase of clock in
such a direction as to bring the accumulated
value toward zero. Recently, Lindsey and Chie
studied acquisition behavior of a first order
DPLL™®!

In this paper, using the DPLL model origi-
nally proposed by Reddy and Guptam, the
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acquisition behaviors of the first and second
order DPLL in the absence of noise are studied.
Specifically, we are interested in the general
acquisition behavior, the acquisition time, the
lock range, and the effects of quantization on
acquisition. One may note that Reddy and
Gupta’s DPLL is the most analogous to the
conventional sinusoidal APLL. This is the
reason why we have chosen their DPLL for our
study.

Following this introduction, in section II we
briefly describe the DPLL system under study.
In section III, discrete time analyses of the
first- and second-order DPLL’s including the
phase error behavior on the phase plane are
carried out. In section IV, analysis on acqui-
sition time of the DPLL’s is done, and the
results will be verified by computer simulation.
In addition, lock range of the DPLL’s will be
considered in section V. Finally, conclusions
will be made in section VL

II. Description of DPLL and its Operation

A block diagram of the DPLL under study is
shown in Fig. 1. It consists of a sampler, a
quantizer, a digital loop filter, and a digital
clock with a local oscillator. A model of the
DPLL system is depicted in Fig. 2. The loop
filter used for the second order DPLL is shown
in Fig. 3. Comparing the DPLL with a conven-
tional APLL, the sampler corresponds to a
phase detector in APLL, and the digital clock
corresponds to a VCO. It differs markedly from
the APLL in both structure and mechanism of
locking.

Incoming
SAMPLER QUANTIZER LOOP FILTER
Slgnal

DIGITAL CLOCK

Fig. 1. Block diagram of DPLL.

The operation of the DPLL is as follows. At
t = t(0) the digital clock generates a signal for
the sampler so that the sampler takes from an



Acquisition Behavior of a Class of Digital Phase-Locked Loops 57

alk)
A Sin( ) HOUANTIZER }-—-’{ FILTER

b (k)

DIGITAL  CLOCK

Fig. 2. Model of DPLL.
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Fig. 4. Input signal waveform and sampled

values by DPLL.

incoming sinusoidal signal a sample with the
magnitude of a(0) as shown in Fig. 4. It is
quantized by an L-evel uniform quantizer
without dead zone, and then the ocutput of the
quantizer is filtered by a digital loop filter. The
digital filter output, b(0), is a correction com-
mand to the digital clock. The clock generates
a sampling signal after the digital clock counts
(N-b(0)) pulses from the local oscillator, where
N is an integer representing the number of
states that the phase error can take in modulo
2n. In this case the next sampling time period
is T(1) = T- (T/N) b (0) where T= 27/ w, (wo
is the carrier frequency of the incoming signal).
Due to a new sampling signal at t = t(1), the
sampler takes another sample with the magni-
tude of a(1) = sing(1). The phase error between
the positive going zero crossing point of the
incoming signal and the phase of the sampling
signal from the clock is ¢(1) at t = t(1). This
process continues. The second sampling point
at t=t(1) is nearer to the positive going zero

crossing than the first sampling poif;t at t=t(0),
thus reducing the phase error. The third sample
is taken after T(2) [=T-(T/N) b (1)] seconds,
moving the sampling point still closer to the
positive going zero crossings. The fluctuating
range of the phase error lies within  2m/N with
the average phase error and the magnitude of
minimum error lying within 7/N. Since the
DPLL is an all digital feedback system, no
perfect locking
oscillating range of the steady state phase error
can be kept within some ‘allowatle range for a
Details of the DPLL
system may be found in reference!?!

is possible. However, the

specific application.

III. Mathematical Model of DPLL

To obtain the equations of DPLL operation,
let the incoming analog signal with the ampli-
tude A and phase angle Oi (t) be

s(t)=Asin(w0t+0i(t)). (1)

Then, the output of the digital loop filter, b(k),
may be expressed as

b(k)=D[Q[A sing(k)] ] (2)

where Q(*) is the quantized value, D(*) in-
dicates the filtering operation by the digital
loop filter, k) = Hi(k) —Oo(k), and 00(k) is
the output phase sample at the kth instant. The
sampler takes a sample of the incoming signal
when an impulse is sent by the digital clock.
This discrete timing information constitutes the
output phase of the clock. On each sampling
instant the clock phase advances by 27 radians
since each sampling period corresponds to one
full cycle as far as the digital clock is concerned.
As shown in Fig. 3, the digital low-pass filter
used in our second-order DPLL system is a
proportionality plus accumulator, whose tran-
sfer function corresponding to l+a/s in the
analog domain is

* This section is largely based on the work
of Ready and Guptal®! but is presented
in slightly different form.
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.
- T+a
D(z)=(+)—5— (3)
z-1
where “a’ is a constant.
Note from Fig. 4 that
k
th)= 2 TG+ H0) 4)
J =
where
. _ T
k) =T- b(k-1) . (5)

Hence, the total output phase up to k is

(k) =J]le w@T() = 2mk ()
where w(k) [=2nm/T(k) ] is the instantaneous
frequency in radians per second in the kth
clock period. This d)o(k) may be expressed in
terms of the frequency W, of the incoming
signal as

<I>O(k) =W, t(k)+6 0(k). )]

Hence, from (4), (5) and (7) we have

k
6,00 =2 (@) ) T(3) -6, 1(0).
. (8)

Introducing D(z) for the loop filter transfer
function in z-domain and using (5) and (8), we
obtain the output phase as

k T
Bo(k)=j§ | WoN D(z) Q[A sing (j-1) -, t(0),

(9)

from which we have a difference equation for
the output phase

T
Bo(k+l) = Go(k) + on\I—D(Z) Q[Asing (k)].
(10)

Since ®(k) = Gi(k) - Oo(k), (10) may be re-
written as

¢(k+1) -¢(k) + w T/N D(z) Q

[A sing(k)] =0,(k+1) -0,(k). (1

“{raD) T [
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Also, we obtain from (2), (4), (5) and (8) the
total time up to kth sampling:

thy=1(0) + £ T~ oK) T @ HO)

w (12)

Letting t(0) = 0 and 00(0) = 0 for simplicity of
analysis, we have
0,(%)

Yo

t(R)=FT-~ (13)
Egs. (10), (11) and (13) are important for our
subsequent analyses of the DPLL system. Using
these equations, one can plot the responses of
the first (a = 0) and second-order DPLL to the
phase step input of §. Figs. 5 and 6 show these
plots with one-level (L = 1) and three-level
(L=3) quantizers, respectively.

3
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Response to phase step input of first-
and second-order DPLL with one-level
quantizer [N =24, L= 1, Gi(O) = 3.1
rad].

Fig. 5.

* (0

Fig. 6. Response to phase-step input of first-
and second-order DPLL with three-
level quantizer [N = 24, L =3, Bi(O) =

3.1 rad].
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If the input is a sinusoidal signal with the
frequency step input of w, the input phase at
the kth sampling instant is given by

0. (k) = (w-w,) t(K). (14)

Hence, with aid of (13) we have

w

ei (k) =

_wo
o, 2k -6, (). (15)

Thus,
w (4)0
Hi(k-i-l)—ai(k): T[Zﬂ-wo'
0
T (16)
N D) Q [Asing(i)] |

Consequently, substituting (16) into (11), we
obtain the equation for phase error

T
¢ (k+1) = ¢(k) - WD () Q[Asing (k)]

¢ (——Zoyon (17)
W, )

Using the above equation, one can plot the fre-
quency acquisition processes of the first-and
second-order DPLL with different parameter
values. These are shown in Figs. 5.7 through 9.

) |

Fig.7. Responses to frequency step input
of first- and second-order DPLL with
one-level quantizer [N = 24, L = 1,

w/wO =0.9].

In these figures, it is seen that as the number
of quantizer levels L increases and/or as the
number of phase error states N decreases, the
lock range becomes large. Also, as N increases,
deviation (i. e., maximum amplitude of phase
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Fig. 8. Responses to frequencv step input
of first- and second-order DPLL with
one-level quantizer { N = 12, L = |,
w/w0=0.9].
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Fig.9. Responses to frequency step input

of first- and second-order DPLL with
three-level quantizer [N = 24, L = 3,
w/w, =09].

error oscillation) of the steady state phase error
decreases, but acquisition time increases. For a
given N, as the number of quantizer levels and
the filter parameter value ‘a’ increases, acquisi-
tion time decreases. Also, as the value of the
filter parameter ‘a’ increases, deviation of the
steady state phase error increases.

In addition, one can draw phase plane plot<
showing the phase change (i.e.,Ad)k =¢(k+1)
~-¢ (k)) as a function of ¢(k). Phase plane plots
of the first- and second-order DPP’s with dif-
ferent parameter values are shown in Figs. 10
through 14. One can note that, unlike in APLL
in which the points of the phase error on the
phase plane gradually reach the origin, the
points of the DPLL phase error in the steady
state oscillate between two points or more.



60

To obtain acquisition time, one must find
the required number of steps for a DPLL to
achieve the steady (locking) state. Note that for
a frequency step input of w, the phase error is

(k) = wt(k)~ 2nk. (18)
Hence, the required number of steps for ac-
quisition is

L= wt(k) ¢ s

21

’ (19)

where ¢ss is ¢(k) of (18) in the steady state.
Substituting (13) and (9) into (19), we can
obtain the following explicitly in terms of
DPLL parameters;

1 T k=1
k=77 [wlkT -ND(Z>J_=EO Q[Asing()]1]

- o). (20)

Henceforth we assume for simplicity that
amplitude of the sinusoidal input is unity
(i.e., A=1), and the initial condition ¢(0) is
zero. We now discuss (20) specifically for the
first- and second-order loop with a one or
multi-level quantizer.

1. First-Order Loop with One-Level Quantizer

For a first-order DPLL, we have D(z) = 1.
Note that before the DPLL is in lock condition,
we have

QLsing (D] = -1
and Qlsing ()] =1

for w( W,

for w )wo

k-1
Thus, we replace .20 Qlsing(j)] by #(k-1) in
J=

(20). Solving the resulting equation for k, we
obtain the required number of steps for acquisi-

tion, kacq’ as
+
" - Nw‘¢ss
acq T
2n-wT igw @n

In the above equation the upper or lower sign
is taken depending on w)wo or w(wo, re-
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has been determined,
is readily obtained

spectively.
the acquisition time, T

Once ka c
acq’
from

_ ¢SS * 2nkac

qQ

Tacq (22)

()

2. First-Order Loop with L (L=22) Level
Quantizer

In L-level quantization, the value of Q[sing
(j)] is taken to be 0,. *1, £2, . . . ., or ¥L. We
assume that the probability of having each of
those quantized values is the same until the
DPLL becomes in lock condition, and that the
quantizer used has no dead zone. The expected
value of Q [sing(j)] is then H(L+1)/2. Thus, if
wilw o

ko1 L4l
jz 0 Q [sing (j)] = - (T)(k-l), (23)

and if w> w,,
k-1 1L+1
) EO Qlsing (] =(—5-Nk-1).  (24)
J =

Consequently, we obtain

L+l T

K - 2 Nw_¢ss

= L+I. T (25)
2n - wT % 5 N

where the upper or lower sign is taken again
depending on w>w o ©Of w@o, respectively.
As before, the acquisition time can be obtained
by substituting (25) into (22).

3. Second-Order Loop with One-Level
Quantizer

To obtain the analytical expression for
acquisition time of the second order DPLL, we
first find the output phase of the clock, Bo(k),
and then substitute this value into (13) to
obtain t(k). Then, we obtain the number of
steps required for acquisition by substitut-
ing t(k) into (19).



Acquisition Behavior of a Class of Digital Phase-Locked Loops 61

Introducing the transfer function D(z) of the
loop filter given by (3) into (9), we obtain

z-Ek-1 ) .
6, k)=B—— % Qlsing (],  (26)
z-1 j=0.
where
1
EA
— 1 +a
and

Multiplying (z-1) on both sides of (26), we can
obtain the resulting equation in the following
form:

k .
O (1) =0, () = BI 2 0 [sind ()

k-1
-B I Qlsin¢()]] @7)
J:

As discussed previously, prior to phase locking,
we have for a one-level quantizer

Q[sing(j) ] =x1 for w%wo.

Consequently, reatranging (27) yields

1-E . 3E-I
6. ()=4B(5~ k>~ k-E). (28)

Substituting (28) into (13) and then the result
into (19), we obtain a quadratic equation of k;

Xk2+Yk+2Z=0 (29)
where '
. T _ T
X=F —wa, Y=wT-21¥—w (2-2)
2N 2N
and
N T
Z—-._—N‘w—(ﬁss,

and the upper or lower sign is taken depending
on w>w0 or w<wo, respectively. Solving (29)
for k and taking only the positive sign since k
is always a positive quantity, we have

-Y +4/Y?% -4X2Z
k= (30)
2X

One should note that the k obtained above is
not exactly the desired number of steps re-
quired for acquisition, kac . The reason is due
to the filtering effect. This effect and a proce-
dure of getting a correction term may be ex-
plained as follows. As discussed previously,
since the DPLL under consideration is an all
digital feedback system, no perfect locking is
possible. The sampling instants alternate with
respect to zero crossing points, and so does
the phase error. Therefore, the outputs of the

digital filter would oscillate about some value in
the steady state. In the process of achieving the
locking condition, the clock generates one pulse
after the clock counts M pulses from the local
oscillator, M being equal to w, N/w. In this
case the digital filter output would be N-M.
Thus, one can say that the DPLL is in lock
when the filter output oscillates about the value
of N-M, and that the average value of one
period of the filter output is also N-M.

When the absolute value of the second step
of the digital filter is greater than or equal to M’
(= IN-M ), the loop is in lock from the first
step, and thus kva = 1. On the other hand,
when the absolute value of the second step of
the digital filter is less than M’, the locking
condition cannot be achieved instantly. Rather,
it requires more than one step, the number of
steps depending on M'. At the kth step in (30)
the digital filter output is 2M’ - (1+a). Several
steps are required for this digital filter output
to reduce to M’ The number of the required
additional steps would be 2+ M'-2. Therefore,
the actual kacq is a

'

-2
=k+ —_—
Kgeq =K+ Q2 +——) &30

where k is obtained by (30).

4. Second Order Loop with L-Level (L=2)
Quantizer
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Fig. 10. Phase plane plot of first-order DPLL
with phase error input [N=24 L =3,
a=0, 01(0) = 3.1 rad].
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Fig. 11. Phase plane plot of second-order
DPLL with phase error input [N = 24,
L=1 a= 05, Bi(O) = 3.1 rad].
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Fig. 12. Phase plane plot of second-order
DPLL with phase error input [N = 24,
L=1 a-= 10, 9i(0) = 3.1 rad].
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Fig. 13. Phase
DPLL with frequency error input
[N=12,L=1,a=0.5, w/wo =0.86].

plane plot of second-order

AP(R)

N

e ik

Fig. 14, Phase plane plot of second-order
DPLL with frequency error input [ N=
36, L=3, a=0.5, w/wo = 0.86].

Quantitative results of the acquisition time
and range will be discussed in detail in the
sections that follow.

1V. Acquisition Time of DPLL

Here we derive analytical expressions for
acquisition time of the first- and second-order
DPLL’. These results will be verified by com-
puter simulation.
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Analysis for L222 may be carried out in the
same way as for the case of L=1. If the absolute
value of the second step of the digital filter is
greater than or equal to M/ kacq is then Q
[sing(1).}] Now consider the case of the ab-
solute value of the second step of the digital
filter is less than M'. As discussed previously in
the case (C), we note that, before the DPLL is
in lock, Qfsing¢(j)] = -L if w(wo, and Q [sing
() = L if w)wo. Hence, the quantities X, Y
and Z defined in (29) must be modified as

_T T
X=%— wal, Y=wl-2n*— w(2-a)L
2N 2N
(32)
and T
Z=1t —wlL~¢
N

With these modified quantities we can obtain k
from (30).

In contrast to the case (3) {L = 1] in which
several steps are required to reduce the absolute
value of the digital filter output to M', we note
in this case that, since the quantizer has several
levels, the number of required steps for reduc-
ing the absolute value of the filter output to
M’ is very small (typically | or 2). Therefore,
we neglect the correction term. Then, the re-
quired number of steps for acquisition, kacq’
in this case is equal to k that may be obtained
from (30) and (32).

Necdless to say, to obtain the acquisition
time in all four cases, one needs to substitute
kacq in (22). Analytical and simulation results
for a second-order DPLL systems are shown
in Figs. 15 and 16. We obscive from the Fig.
that as the filter parameter, a, and the number
of quantization levels, L, increase, acquisition
time decreases.

V. Lock Range of DPLL
1. First-Order DPLL

We note that ¢(k+1) =@(k) = ¢ss in the
steady state, and that the maximum and

minimum values of Q[ A sinqbsq] are L and -L,

4
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Fig. 15. Number of steps required for second-
order DPLL to achieve locking vs.
frequency deviation w/wo [N = 24,
L = 1} (Solid line is theory and
dotted points are simulation results).

—v il n .
076 084 092 100 108 116 124
i

Fig. 16. Number of steps required for second-
order DPLL to achieve locking vs.
frequency deviation w/wy [N = 24,
L = 3] (Solid line is theory and
dotted points are simulation results).

respectively. Hence, we obtain from (17) the

following:
N w N
_.,...< S < —————
N+L w N-L. (33)

(]

This result is the same as that obtained first by
Reddy and Gupta [2].

2. Second-Order Loop with One-l.cvel
Quantizer
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First, consider the case that w is less than
W, Locking procedure of a second-order
DPLL with one-level guantizer is depicted in
Fig. 17. We note that at the first step the digital
filter output is zero, and the clock generates the
first sampling pulse at the point P after it
counts N pulses (See Fig. 17).

I~ (M-{1,0) +(M~ (1+2a})

am +
boad I~ M-(1420)

Fig. 17 Locking procedure of second-order
DPLL with one-level quantizer.

Since the sign of the first sample is negative, the
quantizer output of the second step is ~1, and
thus the digital filter output is — (1+a), whose
magnitude is less than M'. Thus, the second
sampling point is on the left of the point, 27 P,
If the absolute value of the digital filter output
is equal to M’ the second sampling point would
be at the point, 27+P. If the absolute value of
the digital filter output is greater than M’ the
second sampling point would be on the right
of the point, 2n+P. The above two cases arise
when k

acq
the second sampling point is on the left of the

=1, as discussed in section IV. When

point, 27+P, the quantizer output would be -1
at the third step. Then the digital filter output
becomes ~(1+2a).
solute value of the digital filter output is less
than M, the third sampling point is at (27+Q).
In general, at the (k+1) the step the digital
filter output is -(1+ka).
continues until the absolute value of the digital

In this case, since the ab-

The above process

In this case the

(Ma‘1 +2) th

filter output is equal to M'.

Ma"l After the

step the absolute value of the digital filter

value of k is

output is greater than M. Thus, if we assume
that the previous sampling point is at some
point, say R, the next sampling point is on
the right of the point 2m+R. Conseugently,

19827F 10/ i - IUE@LE 19 & F 5

the DPLL would be in lock.
Now let us define a new quantity M" as

M' & M —(1+a)+M —(1+2a)+

M'-—-1
a

+M -+ a)

M2 _(a+2)M +a+1
7 34)

M+ M is greater than M/2 at the kth step,
the next sampling point would be on the left
of the negative zero crossing, 2m(k — 1) + m.
The quantizer output of the (k + 1)th step is
+1 and the DPLL cannot be in lock. However,
if M" + M’ is less than or equal to M/2, the
absolute value of the digital filter output
is greater than M', and the DPLL would be
in lock. The above statement for locking
condition may be reiterated algebraically as

M"+M'<M7,
where
N 1 1
A fo)’ (33)

from which we obtain

N

(N+a+1) + V (N+a+1)? — (N2 +H2—a)N+a+1)

< %0 <1. (36)
The inequality (36) represents the lower
bound of the lock range of the second order
DPLL with one level quantizer.

Next, we consider the case that w is greater

than w . Since £>{ . M’ is equal to %{(t}—ow%).

Thus, in this case the inequality (35) becomes

"

M + —( , 37

14

1. _M
oy <<
PS5

1
f0

from which we obtain

N

(5]
1 <——
Yo
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- N
(Nta—1) —/(N+a1)?— (N2 +a—2)N+a+1).
(38)

Having obtained the lower and upper bounds
of the lock range, we obtain the overall lock
range of the second order DPLL with one level
quantizer:

N

(N+a+1) ++/ (N+a+1)? <(N2H(2 -a)N+a+1

<Y <
(.00

N
(N+a—1) =/ (N+a—1)2 = (N2 +a—2)N+a+1).

(39)

Fig. 18 shows lock range versus filter parameter
value with N as a parameter for a second-order
DPLL with one-level quantizer. It 1s seen that,
as the number of phase error states, N, de-
creases, the lock range increases. Also, it is
observed that, as the filter parameter value, a,
increases, the lock range increases. However,
no significant increase can be attained beyond

a=2

Fig. 18, Lock range of second-order DPLL
with one-level quantizer vs. filter para-

o
meter value a .

3. Second-Order Loop with L{L=2) Level
Quantizer

We first consider the case that w is less than
W, The first sampling pulse from the clock
T

is generated after NN seconds from t(0),

and the second sampling pulse is generated after

N+ L(1 +a)* —;—seconds from the time of the

first sampling pulse (i.e., t(1)). Hence, the

second sampling pulse is generated after [2N +
L(1 +a) |} % seconds or w[2N + L(1 +a)] :Nr—

At this time, the
sampled output of the incoming sinusoidal

radians from the origin.

wave is sin {w [2N + L(1 + a)] %] I M s

less than L(1 + a), the DPLL would be in lock,
but if M is greater than or equal to L(1 + a), it
would be out of lock. In Fig. 19,

. . .1, L1
Fig. 19. lllustration showing sin (—L—).

if the second sampling pulse is ger.erated
between the points of the first sampling instant
and 37, it would be impossible to lock. Fur-
thermore, if the second sampling pulse is
generated between the points of 37 and 37+

o, L-1 .
sin 1(-1«,*)’ it would be also impossible to

lock, since the next quantizer output is less
than or equal to L — 1, and thus the inequality
M'<<L(1+a) cannot be satisfied. Therefore,
for locking the point of th2 second sampling
instant should be greater *han or equal to the
L-1
T
ment algebraically, we have

point of 3w + sin"I( ). Writing this state-

T 4, L—1
w[2N+L(1 +a) ] §>3w +sin (-—r) » (40)
which may be written in another form as

Lo L=l
[].5+2w sin (-—L—-)]N

w .
<—<1. (41
2N+ L(1 + a) Wy
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The inequality (41) gives the lower bound of
the lock range of a second order loop with a
multi - level quantizer.

Next, we consider the case that w is greater
than W, To find the upper bound of the
lock range, we use the similar argument. In
this case we obtain

w[2N—L(1+a)]—§ '1( ) 42)

which may be rewritten as

1
(2.5 —=—si -1———)]
1<%< 2" ¢ (43)
2N — L(1+a)

Consequently, the lock range of a second-
order DPLL with multilevel quantization is

1

[1. 5+2—nsm'1(——) IN < @<
w
2N + L(1+a) °
)
[2.5 o sin (——) IN
(44)
2N — L(i+a)

Fig. 20 shows lock range versus filter parameter
value with N as a parameter for a second-order
DPLL with three-level quantization. Com-
paring Fig. 20 with Fig. 18, one can see that
lock range increases as the number of quantiza-
tion level increases.

Yo,
200 /
175 Net2
150 24
128 36
100 o 1o ) 20
ors| 6
om0 b N=12

Fig. 20. Lock range of second-order DPLL
with three-level quantizer vs. filter
parameter value 'a’

1982 107 ETREE £ 19% H 50

VI. Conclusion

We have studied the acquisition behavior of
class of first- and second-order DPLL’s
commonly wused in digital synchronization
systems.  Specifically, we have investigated
the effects of quantization, filtering, and the
number of phase error states on acquisition
time and range. The acquisition behavior of
the DPLL with different values of L, N and

a’ may be summarized as follows:

1) As the number of quantization levels, L,
increases, acquisition time decreases, and
lock range increases. Variation of L affects
little the magnitude of the steady state
phase error.

2) For a given L-level DPLL system, as N
increases, acquisition time increases, and
lock range decreases. However, in this case,
the magnitude of the steady state phase
error decreases, which is desirable. The
steady state oscillating phase error is within
the range of £ 27/N.

3) As in the analog counterpart, a first-order
DPLL can not achieve locking at all times.
For a second-order DPLL, one can get -a
smaller acquisition time and a larger lock
range as the filter parameter value 'a’ be-
comes larger. However, the magnitude of

the steady state phase error increases in

that case. Hence, ‘a compromised value of

'a’ must be taken.

The theoretical results obtained should be

very useful in designing a DPLL.
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