• Title/Summary/Keyword: error range

Search Result 2,811, Processing Time 0.031 seconds

A study on interference analysis between FHSS atd DSSS short range radio devices (FHSS 및 DSSS 방식 소출력 무선기기간 간섭분석에 관한 연구)

  • Choi, Jae-Hyuck;Koo, Sung-Wan;Chung, Kyou-Il;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.242-247
    • /
    • 2009
  • In this paper, we investigate interference between short-range radiocommunication devices (SRDs) with frequency hopping spread spectrum (FHSS) and direct sequence spread spectrum (DSSS) methods when they are in the same frequency bands. In order to analyze interference from unwanted emission of SRD with DSSS to that of FHSS, Monte-Carlo (MC) simulation method is employed and interference probabilities are calculated. We simulate interference scenarios in accordance with several duty cycles and bandwidths. It is also assumed that the propagation model is free space The effect of distance between interfering transmitter and victim receiver is analyzed and bit error rate (BER) is simulated. From the interference analysis results, it is shown that duty cycle affects compatibility more than bandwidth does. Also, we can make sure of the separation distance which satisfies BER criterion when there are only one interfering transmitter and multiple interfering transmitters.

  • PDF

Accuracy-improvement simulation of self-mixing semiconductor laser range finder driven by reshaped modulation current

  • Shinohara, Shigenobu;Nobunaga, Kazuhiko;Yoshida, Hirofumi;Ikeda, Hiroaki;Miyata, Masafumi;Nishide, Ken-ichi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1021-1026
    • /
    • 1990
  • Accuracy improvement of a self-mixing semiconductor laser range finder is predicted by simulation, in which the laser modulation current is reshaped to give an ideal triangular waveform of the optical frequency change. The maximum range measurement error of less than 0.1% in a wide range of O.1m to 1m is expected by the reshaping of the modulation current. Experimental verification of the effect of current reshaping on the linearization of the derivative of the optical frequency change curve is given.

  • PDF

An Analysis of Carrier-Smoothed-Code Filters for DGNSS (차분위성항법 위상평활화코드 필터의 성능 해석)

  • Rizos Chris;Jee Gyu-In;Lee Hyung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.378-384
    • /
    • 2005
  • This paper proposes a theoretically rigorous analysis procedure that compares the position domain and range domain carrier-smoothed-code filters for differential GNSS positioning. Utilizing consistent error covariance formulation, it is shown that filtering in the position domain is, in theory, more advantageous than range domain carrier-smoothed-code filtering. It is also shown that if the visible satellite set does not change during a sufficiently long time interval the performances of position and range domain filters are similar.

Compensation of SDINS Navigation Errors Using Line-Of-Sight Vector (시선벡터를 이용한 관성항법장치의 보정기법)

  • Lim, You-Chol;Yim, Jong-Bin;Lyou, Joon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2521-2524
    • /
    • 2003
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors (accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range missile missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System (SDINS) using Line-Of-Sight(LOS) vector from star sensor. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the bounded-ness of position and attitude errors.

  • PDF

Identify Hypoid gear whine noise for Deflection test and Transmission error measurement (하이포이드 기어의 소음원인규명을 위한 디플렉션 테스트와 전달에러 측정에 대한 연구)

  • Choi, Byung-Jae;Oh, Jae-Eung;Park, Sang-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.91-98
    • /
    • 2008
  • Hypoid gears are widely used in rear drive and 4WD vehicle axles. Investigation of their sensitivity to deflections is one of the most important aspects of their design and optimization procedures. The deflection test is performed in the actual gear mounting using completely processed gear. This test should cover the fun operating range of gear loads from no load to peak load. Under peak load the contact pattern should extend to the tooth boundaries without showing a concentration of the contact pattern at any point on the tooth surface. Transmission error is tested on an axle assembly triaxial real car load condition.

  • PDF

Basic Study of the Optimization of the Gain Parameters α, β and γ of a Tracking Module for ARPA system on Board High Dynamic Warships

  • Pan, Bao-Feng;Njonjo, Anne Wanjiru;Jeong, Tae-Gweon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.305-307
    • /
    • 2016
  • The purpose of this paper is to determine the optimal values of the gain parameters used in the tracking module for a highly dynamic warship. The algorithm of the tracking module uses the ${\alpha}-{\beta}-{\gamma}$ filter to compute accurate estimates and update the state variables, that is, positions, velocity and acceleration. The filtering coefficients ${\alpha}$, ${\beta}$ and ${\gamma}$ are determined from set values of the damping parameter, ${\xi}$. Optimization is achieved by plotting a range of the damping parameter ${\xi}$ against the corresponding residual error and then selecting the best value of ${\xi}$ with the minimum residual error. Optimal values of the smoothing coefficients are subsequently computed from the selected damping parameter, ${\xi}$.

  • PDF

Accuracy improvement of laser interferometer with neural network (신경회로망을 이용한 레이저 간섭계 정밀도 향상)

  • Lee, Woo-Ram;Heo, Gun-Hang;Hong, Min-Suk;Choi, In-Sung;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.597-599
    • /
    • 2006
  • In this paper, we propose an artificial intelligence method to compensate the nonlinearity error which occurs in the heterodyne laser interferometer. Some superior properties such as long measurement range, ultra-precise resolution and various system set-up lead the laser interferometer to be a practical displacement measurement apparatus in various industry and research area. In ultra-precise measurement such as nanometer or subnanometer scale, however, the accuracy is limited by the nonlinearity error caused by the optical parts. The feedforward neural network trained by back-propagation with a capacitive sensor as a reference signal minimizes the nonlinearity error and we demonstrate the effectiveness of our proppsed algorithm through some experimental results.

  • PDF

Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements

  • Kang, Min-Wook;Won, Jihye;Kim, Mi-So;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The International GNSS Service (IGS) provides the IGS-Real Time Service (IGS-RTS) corrections that can be used in stand-alone positioning in real time. In this study, the positioning accuracy before and after the application of the corrections to broadcast ephemeris by applying the IGS-RTS corrections at code pseudo-range based stand-alone positioning was compared with positioning result using precise ephemeris. The analysis result on IGS-RTS corrections showed that orbit error and clock error were 0.05 m and 0.5 ns compared to precise ephemeris and accuracy improved by about 8.5% compared to the broadcast ephemeris-applied result when the IGS-RTS was applied to positioning. Furthermore, regionally dispersed five observatories were selected to analyze the effect of external environments on positioning accuracy and positioning errors according to location and time were compared as well as the number of visible satellites and position dilution of precision by observatory were analyzed to verify a correlation with positioning error.

A Location Technique Based On Calibrated Radio Frequency Propagation Model For Wireless Local Area Networks (교정된 전파전파 모델에 기반한 WLAN 측위 기법)

  • Kim, Hee-Sung;Shim, Ju-Young;Choi, Wan-Sik;Lee, Hyung-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.760-766
    • /
    • 2008
  • This paper proposes an efficient location technique to find an indoor location under the IEEE 802.11 wireless local area networks. The proposed method is based on the range measurements obtained from a simple radio frequency propagation model. Thus, unlike the radio frequency fingerprint correlation method, it does not suffer from the computational burden during the real-time location service period and can quickly reply the location requests of many users at the same time. To increase the location accuracy in spite of the frequent non-line-of-sight error occurrences, the proposed method calibrates the distortion of the non-line-of-sight error by a simple measurement surveying procedure that does not require the surveyor's manual interaction. Experimental results show the capability of the proposed method.

Mobile Robot Localization using Ceiling Landmark Positions and Edge Pixel Movement Vectors (천정부착 랜드마크 위치와 에지 화소의 이동벡터 정보에 의한 이동로봇 위치 인식)

  • Chen, Hong-Xin;Adhikari, Shyam Prasad;Kim, Sung-Woo;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.368-373
    • /
    • 2010
  • A new indoor mobile robot localization method is presented. Robot recognizes well designed single color landmarks on the ceiling by vision system, as reference to compute its precise position. The proposed likelihood prediction based method enables the robot to estimate its position based only on the orientation of landmark.The use of single color landmarks helps to reduce the complexity of the landmark structure and makes it easily detectable. Edge based optical flow is further used to compensate for some landmark recognition error. This technique is applicable for navigation in an unlimited sized indoor space. Prediction scheme and localization algorithm are proposed, and edge based optical flow and data fusing are presented. Experimental results show that the proposed method provides accurate estimation of the robot position with a localization error within a range of 5 cm and directional error less than 4 degrees.