• Title/Summary/Keyword: error criterion

Search Result 531, Processing Time 0.041 seconds

A Study on Forecast of Oyster Production using Time Series Models (시계열모형을 이용한 굴 생산량 예측 가능성에 관한 연구)

  • Nam, Jong-Oh;Noh, Seung-Guk
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.185-195
    • /
    • 2012
  • This paper focused on forecasting a short-term production of oysters, which have been farmed in Korea, with distinct periodicity of production by year, and different production level by month. To forecast a short-term oyster production, this paper uses monthly data (260 observations) from January 1990 to August 2011, and also adopts several econometrics methods, such as Multiple Regression Analysis Model (MRAM), Seasonal Autoregressive Integrated Moving Average (SARIMA) Model, and Vector Error Correction Model (VECM). As a result, first, the amount of short-term oyster production forecasted by the multiple regression analysis model was 1,337 ton with prediction error of 246 ton. Secondly, the amount of oyster production of the SARIMA I and II models was forecasted as 12,423 ton and 12,442 ton with prediction error of 11,404 ton and 11,423 ton, respectively. Thirdly, the amount of oyster production based on the VECM was estimated as 10,425 ton with prediction errors of 9,406 ton. In conclusion, based on Theil inequality coefficient criterion, short-term prediction of oyster by the VECM exhibited a better fit than ones by the SARIMA I and II models and Multiple Regression Analysis Model.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Efficient stop criterion algorithm of the turbo code using the maximum sign change of the LLR (LLR 최대부호변화를 적용한 터보부호의 효율적인 반복중단 알고리즘)

  • Shim Byoung-Sup;Jeong Dae-Ho;Lim Soon-Ja;Kim Tae-Hyung;Kim Hwan-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.121-127
    • /
    • 2006
  • It is well known the fact that turbo codes has better performance as the number of iteration and the interleaver size increases in the AWGN channel environment. However, as the number of iteration and the interleaver size are increased, it is required much delay and computation for iterative decoding. Therefore, it is important to devise an efficient criterion to stop the iteration process and prevent unnecessary computations and decoding delay. In this paper, it proposes the efficient stop criterion algorithm for turbo codes using the maximum sign change of LLR. It is verifying that the proposal variable iterative decoding controller can be reduced the average iterative decoding number compared to conventional schemes with a negligible degradation of the error performance.

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Simple Stopping Criterion Algorithm using Variance Values of Noise in Turbo Code (터보부호에서 잡음 분산값을 사용한 간단한 반복중단 알고리즘)

  • Jeong Dae-Ho;Kim Hwan-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.103-110
    • /
    • 2006
  • Turbo code, a kind of error correction coding technique, has been used in the field of digital mobile communication system. As the number of iterations increases, it can achieves remarkable BER performance over AWGN channel environment. However, if the number of iterations Is increases in the several channel environments, any further iteration results in very little improvement, and requires much delay and computation in proportion to the number of iterations. To solve this problems, it is necessary to device an efficient criterion to stop the iteration process and prevent unnecessary delay and computation. In this paper, it proposes an efficient and simple criterion for stopping the iteration process in turbo decoding. By using variance values of noise derived from mean values of LLR in turbo decoder, the proposed algorithm can largely reduce the computation and average number of iterations without BER performance degradation. As a result of simulations, the computation of the proposed algorithm is reduced by about $66{\sim}80%$ compared to conventional algorithm. The average number of iterations is reduced by about $13.99%{\sim}15.74%$ compared to CE algorithm and about $17.88%{\sim}18.59%$ compared to SCR algorithm.

Statistical Evaluation of Sigmoidal and First-Order Kinetic Equations for Simulating Methane Production from Solid Wastes (폐기물로부터 메탄발생량 예측을 위한 Sigmoidal 식과 1차 반응식의 통계학적 평가)

  • Lee, Nam-Hoon;Park, Jin-Kyu;Jeong, Sae-Rom;Kang, Jeong-Hee;Kim, Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.88-96
    • /
    • 2013
  • The objective of this research was to evaluate the suitability of sigmoidal and firstorder kinetic equations for simulating the methane production from solid wastes. The sigmoidal kinetic equations used were modified Gompertz and Logistic equations. Statistical criteria used to evaluate equation performance were analysis of goodness-of-fit (Residual sum of squares, Root mean squared error and Akaike's Information Criterion). Akaike's Information Criterion (AIC) was employed to compare goodness-of-fit of equations with same and different numbers of parameters. RSS and RMSE were decreased for first-order kinetic equation with lag-phase time, compared to the first-order kinetic equation without lag-phase time. However, first-order kinetic equations had relatively higher AIC than the sigmoidal kinetic equations. It seemed that the sigmoidal kinetic equations had better goodness-of-fit than the first-order kinetic equations in order to simulate the methane production.

Robust selection rules of k in ridge regression (능형회귀에서의 로버스트한 k의 선택 방법)

  • 임용빈
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.371-381
    • /
    • 1993
  • When the multicollinearity presents in the standard linear regression model, ridge regression might be used to mitigate the effects of collinearity. As the prediction-oriented criterion, the integrated mean sqare error criterion $J_w(k)$ was introduced by Lim, Choi & Park(1980). By noting the equivalent relationship between the $C_k$ criterion and $J_w(k)$ with a special choice of weight function $W(x)$, we propose a more reasonable selection rule of k w.r.t. the $C_k$ criterion than that given in Myers(1986). Next, to find the $\beta(k)$ which behaves reasonably well w.r.t. competing criteria, we adopt the minimax principle in the sense of maximizing the worst relative efficiency of k among competing criteria.

  • PDF

Nonparametric Estimation of Distribution Function using Bezier Curve

  • Bae, Whasoo;Kim, Ryeongah;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • In this paper we suggest an efficient method to estimate the distribution function using the Bezier curve, and compare it with existing methods by simulation studies. In addition, we suggest a robust version of cross-validation criterion to estimate the number of Bezier points, and showed that the proposed method is better than the existing methods based on simulation studies.

A Study on increasing the fitness of forecasts using Dynamic Model (동적 모형에 의한 예측치의 정도 향상에 관한 연구)

  • 윤석환;윤상원;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.1-14
    • /
    • 1996
  • We develop a dynamic demand forecasting model compared to regression analysis model and AutoRegressive Integrated Moving Average(ARIMA) model. The dynamic model can apply to the current dynamic data to forecasts through introducing state equation. A multiple regression model and ARIMA model using given data are designed via the model analysis. The forecasting fitness evaluation between the designed models and the dynamic model is compared with the criterion of sum of squared error.

  • PDF

Smoothing Parameter Selection Using Multifold Cross-Validation in Smoothing Spline Regressions

  • Hong, Changkon;Kim, Choongrak;Yoon, Misuk
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.277-285
    • /
    • 1998
  • The smoothing parameter $\lambda$ in smoothing spline regression is usually selected by minimizing cross-validation (CV) or generalized cross-validation (GCV). But, simple CV or GCV is poor candidate for estimating prediction error. We defined MGCV (Multifold Generalized Cross-validation) as a criterion for selecting smoothing parameter in smoothing spline regression. This is a version of cross-validation using $leave-\kappa-out$ method. Some numerical results comparing MGCV and GCV are done.

  • PDF