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Abstract
In this paper we suggest an efficient method to estimate the distribution function using the Bezier curve,

and compare it with existing methods by simulation studies. In addition, we suggest a robust version of cross-
validation criterion to estimate the number of Bezier points, and showed that the proposed method is better than
the existing methods based on simulation studies.
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1. Introduction

Nonparametric methods are often used to estimate the density function of a distribution function
because parametric methods are unrealistic and too restrictive to satisfy a prespecified distribution.
For the nonparametric estimation of density function, the best references are Silverman (1986), Eu-
bank (1988), Loader (1999) and Wasserman (2006). As nonparametric density estimation, kernel type
smoothing is widely used. The Bezier curve (Bezier, 1977) smoothing (regarded as one of kernel-type
approaches) is another nonparametric method to estimate density function and regression function. In
computational graphics (especially for the computer-aided-geometric design) Bezier curve smoothing
is popular; however, it rarely used in statistics. Kim (1996) applied a Bezier curve to density estima-
tion for the first time in statistics and Kim et al. (1999) showed that estimators using Bezier curve
smoothing in density estimation and regression function estimation provide similar results to kernel
type smoothing as well as has the same asymptotic properties as classical kernel estimators. Subse-
quently, Kim et al. (2000) applied Bezier curve smoothing to estimation in the measurement error
model. Subsequent works of the Bezier curve are the smoothing of a Kaplan-Meier estimator (Kim et
al., 2003), the smoothing of a bivariate Kaplan-Meier estimator (Bae et al., 2005), and the selection
of Bezier points in density estimation and regression (Kim and Park, 2012).

The smoothness of the Bezier curve is determined by the number of Bezier points and the position
of each point. The curve will be smooth as the number of Bezier points increases and the resulting
curve will be wiggly if the number of Bezier points become smaller. The choice and the number
of optimal Bezier points were first considered by Kim et al. (1999) to estimate the density function
and the regression function, however, it was a theoretical result when the true function is known. It
is not easy to apply their results to a real data set. In this paper, we consider two issues in Bezier
curve smoothing for the estimation of distribution function. First, we suggest an efficient method of
choosing Bezier points to reduce the mean integrated squared error. This is a data-driven method
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Figure 1: Bezier curve b(t) based on 3 Bezier points b0, b1, and b2.

based an existing estimator by the convexity and concavity property. Existing methods are not useful
when the true density is not symmetric, and the suggested method shows better numerical performance
in symmetric and the skewed density. In addition, the suggested method outperforms recent results
by Kim and Park (2012). Second, we consider estimating the number of Bezier points to estimate
the distribution function. We suggest a simple leave-one-out cross-validation, and compare with it
with existing cross validation methods such as least squares cross validation and the likelihood cross
validation.

This paper is organized as follows; methods of selecting Bezier points in estimating distribu-
tion function are proposed in Chapter 2 and relevant numerical results are given. A leave-one-out
cross-validation is proposed, and is compared with existing cross validation methods in Chapter 3.
Concluding remarks are given in Chapter 4.

2. Selection of Bezier Points in Distribution Function

2.1. The Bezier curve

Let b0 = (z0,w0)′, b1 = (z1,w1)′, . . . , bN = (zN ,wN)′ be N + 1 points in R2, then the Bezier curve
based on the N + 1 Bezier points b0, b1, . . . , bN is defined as

b(t) =
(

x(t)
y(t)

)
=

n∑
j=0

b jBN, j(t), t ∈ (0, 1), (2.1)
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Figure 2: Cumulative histogram, the Bezier points at the middle of each histogram, and the corresponding Bezier
curve (m = 10, n = 100 random numbers from a Beta(4, 4) distribution)

where BN, j(t) =
(

N
j

)
t j(1− t)N− j is a binomial density function (also called Bernstein polynomial in the

computer graphics area) (see Figure 1 for illustration).
The Bezier curve has many desirable properties. First, b0 and bN are always on the Bezier curve

bt, and this property is called endpoint interpolation property. Second, bt is symmetric, i.e., it does not
matter if the Bezier points are labeled b0, b1, . . . , bN or bN , bN−1, . . . , b0. Third, it has linear precision
in that

∑N
j=0( j/N)BN, j(t) = t, hence, an initial straight line is reproduced. Finally, the first derivative

of bt with respect to t can be easily shown to be

d
dt

b(t) = N
N−1∑
j=0

(b j+1 − b j)BN−1, j(t). (2.2)

See Farin (1990) for other properties of the Bezier curve. The Bezier curve can be extended to the
higher dimensions, for example, if the Bezier points are in R3, then the resulting one is called the
Bezier surface.

2.2. Existing methods

Let X1, . . . , Xn be random sample from a distribution with density function f and distribution function
F which is assumed to be continuous. Kim et al. (1999) proposed two Bezier curve smoothing
techniques to estimate F based on X1, . . . , Xn.

Let m be the number of intervals in the cumulative histogram based on X1, . . . , Xn. To estimate
F, they considered locating the Bezier points at the middle of each rectangle in the cumulative his-
togram (see Figure 2), however, it underestimates (overestimates) when the Bezier points are convex
(concave). Note that there are m Bezier points in this approach. To overcome the undesirable aspect,
they suggested increasing the number of Bezier points by locating two points in each rectangle (see
Figure 3), and the resulting number of the Bezier points is 2m+ 4. The second point in each rectangle
is located below the first point with the same height as the left rectangle. Let F̂1 and F̂2 be estimators
of F based on m and 2m + 4 Bezier points, respectively. Kim et al. (1999) argued that F̂2 is much
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Figure 3: Cumulative histogram, the Bezier points, and the corresponding Bezier curve (m = 10, n = 100 random
numbers from a Beta(4, 4) distribution)

better than F̂1 in the sense of the mean integrated square error (MISE) at the sacrifice of using more
Bezier points. Condition, they derived the asymptotic bias and variance of F̂2, and noted that the
stochastic order of leading terms of the bias and the variance of F̂2 is the same as that of the kernel
density estimator (Kim et al., 1999).

Note that F̂2, based on 2m+4 Bezier points, showed better numerical performance than F̂1, based
on m Bezier points. The main reason for using more Bezier points in F̂2 is to mitigate overestimating
(underestimating) aspect of F̂1 in the convex (concave) region. Recently, motivated by this reason,
Kim and Park (2012) proposed a method to select the Bezier points to remove the undesirable aspect
of F̂1 based on the same number of Bezier points in F̂1. We propose a method of choosing the Bezier
points which show a similar numerical performance based on half the number of the Bezier points
used in F̂2. The proposed method by Kim and Park (2012) is given in Figure 4. The number of Bezier
points used here is m + 2, and the corresponding estimator is denoted by F̂3. The detailed method to
locate the Bezier points for the compactly supported distribution [0, 1] is as follows.

First, consider the Bezier points in computing F̂1. If the cumulative histogram is less than 0.5,
then move the middle point of each rectangle to the right side of the rectangle and if the cumulative
histogram is larger than 0.5, then move the middle point of each rectangle to the left side of the
rectangle. Second, add two points at (0, 0) and (1, 1). Therefore, the number of Bezier points becomes
m + 2 (see Figure 4).

2.3. A proposed method

The estimator F̂3, proposed method by Kim and Park (2012), performs well when the underlying
distribution is symmetric because the middle point of each rectangle is moved to the right side of
the rectangle if the cumulative histogram is less than 0.5 and the middle point of each rectangle is
moved to the left side of the rectangle if the cumulative histogram is larger than 0.5. However, if the
underlying distribution is far away from symmetric shape, then the performance of F̂3 is not good
as mentioned in the concluding remarks of Kim and Park (2012). The reference value 0.5 in F̂3
should be changed to the inflection point of the distribution function to overcome this undesirable
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Figure 4: Cumulative histogram, the Bezier points, and the corresponding Bezier curve (m = 10, n = 100 random
numbers from a Beta(4, 4) distribution)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●● ●
● ●

● ●

● ●

● ●

●●

● ●

● ●

● ●

● ●
● ●●

true F(x)

Bezier curve F4(x)

Figure 5: Cumulative histogram, the proposed Bezier points, and the corresponding Bezier curve (m = 10,
n = 100 random numbers from a Beta(4, 4) distribution)

phenomenon. The inflection point is around 0.5 if the true underlying distribution is symmetric;
however, the inflection point is also far from 0.5 if the true underlying distribution is far from a
symmetric shape.

As a proposed estimator, we first estimate the inflection point using F̂2 and then apply both the
ideas of F̂2 and F̂3. We denote the proposed estimator as F̂4 given in Figure 5. Note that Bezier points
below the inflection point are moved to the right and those above the inflection point are moved to the
left. Therefore, the number of Bezier points used in F̂4 is 2m + 4.
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Figure 6: Mean of 100 replications of F̂1, F̂2, F̂3 and F̂4 with the true F(x) (m = 10, n = 100 random numbers
from a Beta(4, 4) distribution)

2.4. Numerical performance

We consider six distributions to compare the proposed method with existing methods. (i) Beta(4, 4),
symmetric with compact support; (ii) Beta(5, 2), asymmetric with compact support; (iii) Exponen-
tial(1), heavily skewed to the right with infinite support; (iv) Chi-square(3), lightly skewed to the right
with infinite support; (v) 0.6 Beta(4, 8) + 0.4 Beta(10, 3), mixture distribution with compact support;
and (vi) 0.75 N(−1, 1) + 0.25 N(1.5, 3), mixture distribution with infinite support;

We generate n = 100 random numbers from each distribution, and 100 replications are done.
Optimal number of Bezier points mopt for distributions (i)–(iv) is close to 18 and that for (v) and (vi)
are close to 24. Recall that mopt is determined by minimizing the MISE of F̂1 (Kim et al., 1999). Table
1 lists MISE, IV (integrated variance), and ISB (integrated square bias) of 4 estimators F̂1, F̂2, F̂3,
and F̂4 in six distributions with m = 10 and m = 16 cases (smaller than mopt). In addition, Table 2 list
them using mopt. The MISE of the proposed estimator F̂4 is smaller than that of existing estimators in
all the distributions considered. Table 1 and Table 2 show that the proposed estimator is not sensitive
to the number of Bezier points.

To compare the Bezier curve estimators of the distribution function with traditional nonparametric
estimators (such as a kernel estimator), we note the work by Kim et al. (2006). The kernel distribution
function estimator is given by

F̂(x) =
1
n

n∑
i=1

W
( x − Xi

h

)
,

where W is a cumulative kernel function and h is a bandwidth. Kim et al. (2006, p.597) showed that
the MISE (×104) of F̂(x) when n = 100 under N(0, 1) and χ2(1) distributions are between 50 and 70.
Note that these results are quite similar to F̂1 (see Table 1 and Table 2) and the proposed estimator F̂4
is superior to the kernel distribution function estimator.
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Table 1: MISE, IV (integrated variance), and ISB (integrated square bias) of 4 estimators F̂1, F̂2, F̂3 and F̂4 in 6
distributions with m = 10 and m = 16 cases (×104) .

m Distn Est. MISE IV ISB
F̂1 42.3145 3.9658 38.3487

Beta(4, 4) F̂2 19.9904 0.1570 19.8334
F̂3 11.6017 0.0790 11.5226
F̂4 4.5441 1.1960 3.3480
F̂1 81.2447 2.4001 78.8446

Beta(5, 2) F̂2 9.9721 2.1875 7.7845
F̂3 70.6866 1.8587 68.8278

10 F̂4 5.5507 2.2079 3.3428
F̂1 22.3325 1.0256 21.3068

Exp(1) F̂2 31.7133 0.8328 30.8804
F̂3 44.3081 0.7312 43.5768
F̂4 9.0389 0.1995 8.8393
F̂1 108.2880 25.0671 83.2207

Chi(3) F̂2 26.7206 19.5307 7.1898
F̂3 182.2250 18.2814 163.9436
F̂4 21.7396 0.0411 21.6985
F̂1 11.3019 0.5954 10.7064

0.6 Beta(4, 8)+ F̂2 3.5562 0.5554 3.0008
0.4 Beta(10, 3) F̂3 15.6011 0.5049 15.0962

16 F̂4 2.5781 0.1389 2.4391
F̂1 30.0859 1.3722 28.7137

0.75N(−1, 1)+ F̂2 3.4620 0.5152 2.9467
0.25N(1.5, 0.3) F̂3 37.1376 1.1670 35.9706

F̂4 1.6289 0.1679 1.4610

Table 2: MISE, IV (integrated variance), and ISB (integrated square bias) of 4 estimators F̂1, F̂2, F̂3 and F̂4 in 6
distributions with m = 18 and m = 24 cases (×104).

m Distn Est. MISE IV ISB
F̂1 17.0616 1.1176 15.9440

Beta(4, 4) F̂2 12.1215 1.1302 10.9913
F̂3 6.0909 0.9611 5.1297
F̂4 5.5910 0.3041 5.2868
F̂1 27.2197 4.2307 22.9889

Beta(5, 2) F̂2 6.7030 4.1513 2.5516
F̂3 24.1232 3.6796 20.4435

18 F̂4 6.2914 4.0712 2.2201
F̂1 10.7300 1.1883 9.5416

Exp(1) F̂2 11.9358 1.1110 10.8247
F̂3 23.4198 1.0045 22.4152
F̂4 5.9207 0.2974 5.6233
F̂1 81.4216 27.7514 53.6701

Chi(3) F̂2 40.6532 24.7002 15.9529
F̂3 123.6186 23.6800 99.9385
F̂4 10.3242 0.0420 10.2821
F̂1 4.7377 0.5635 4.1741

0.6 Beta(4, 8)+ F̂2 2.5864 0.5498 2.0365
0.4 Beta(10, 3) F̂3 4.2053 0.5083 3.6970

24 F̂4 1.1440 0.1778 0.9661
F̂1 16.0855 0.5025 15.5830

0.75N(−1, 1)+ F̂2 4.0278 0.5185 3.5093
0.25N(1.5, 0.3) F̂3 18.2345 0.4510 17.7835

F̂4 1.7405 0.4985 1.2419
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3. Estimation of the Number of Bezier Points

The most crucial problem in nonparametric estimation is how to choose a smoothing parameter, and
the number of the Bezier points corresponds to the smoothing parameter in Bezier curve smoothing.
As far as we know there has been no study on choosing the number of the Bezier points. In this chapter
we propose leave-one-out cross validation method and compare it with some existing methods, which
are often used in kernel density estimation, such as the least squares cross validation and the likelihood
cross validation.

3.1. Existing methods

The least squares cross validation (LSCV) is an automatic method of choosing smoothing parameter,
and it has been studied by many authors (Rudemo, 1982; Bowman, 1984; Bowman et al., 1984;
Hall, 1983; Stone, 1984). Let f̂ be an estimator of a density f , then it is reasonable to minimize the
integrated square error, i.e., ∫ (

f̂ − f
)2
=

∫
f̂ 2 − 2

∫
f̂ f +

∫
f 2,

and equivalently, minimizing

R
(

f̂
)
=

∫
f̂ 2 − 2

∫
f̂ f .

Since f is unknown, it is not possible to minimize R( f̂ ). The LSCV minimizes the estimator of R( f̂ )
using the data themselves. Consequently, the estimator of R( f̂ ) is given by

LSCV(m) =
∫

f̂ 2 − 2
n

∑
i

f̂(i)(Xi),

where f̂(i) is the density estimate based on n − 1 observations after deleting Xi with m Bezier points.
The idea of LSCV is to minimize LSCV(m) over the number of the Bezier points m.

On the other hand, the log-likelihood cross validation (LCV), suggested by Stone (1974) and
Geisser (1975), maximizes

LCV(m) =
1
n

n∑
i=1

log f̂(i)(Xi).

The estimate of m is given by minimizing LCV(m) over the number of the Bezier points m.

3.2. A proposed method

A leave-one-out CV (LOOCV) is a special case of leave-k-out CV, and a similar method to the LSCV.
In fact, the leave-one-out CV in estimating the distribution function can be defined as

LOOCV(m) =
1
n

n∑
i=1

(
F̂(Xi) − F̂(i)(Xi)

)2
,

where F̂(i)(Xi) is the distribution function estimate at Xi based on n − 1 observations after deleting Xi

with m Bezier points. The estimate of m is given by minimizing LOOCV(m) over the number of the
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Table 3: Estimation of the number of Bezier points by LSCV, LCV, LOOCV and ACV for Beta(5, 2) with
mopt = 18 and 0.6 Beta(4, 8) + 0.4 Beta(10, 3) with mopt = 24 evaluated for four estimators F̂1, F̂2, F̂3 and F̂4.

Distn F̂1 F̂2 F̂3 F̂4
LSCV 25 19 19 21

Beta(5, 2) LCV 24 17 16 22
LOOCV 18 19 17 19

ACV 18 19 17 18
LSCV 27 23 17 26

0.6 Beta(4, 8) + LCV 29 29 25 27
0.4 Beta(10, 3) LOOCV 26 25 23 25

ACV 24 23 24 24

Bezier points m. The LOOCV uses L2 norm, and can be regarded as a sample version of LSCV. Here
we propose L1 version of LOOCV because it is robust to outlying observations. We call it absolute
CV (ACV), and it can be written as

ACV(m) =
1
n

n∑
i=1

∣∣∣F̂(Xi) − F̂(i)(Xi)
∣∣∣ .

3.3. Numerical performance

To see the numerical performance of four types of cross validation, we estimate the number of Bezier
points m by LSCV, LCV, LOOCV, and ACV for Beta(5, 2) with mopt = 18 and 0.6 Beta(4, 8) +
0.4 Beta(10, 3) with mopt = 24 evaluated for four estimators F̂1, F̂2, F̂3 and F̂4. Table 3 shows that
ACV is quite consistent and accurate compared to LSCV, LCV, and LOOCV.

4. Concluding Remarks

Bezier curve smoothing is a nonparametric techniques to estimate density function and the regression
function, and it shares the same property with the kernel density estimator in the asymptotic properties.
One of the most important issues is the estimation of the smoothing parameter in nonparametric
estimation. In the same spirit, the selection of Bezier points and the estimation of the number of
Bezier points in Bezier curve smoothing is very important in Bezier curve smoothing.

In this paper, we proposed a novel method to select Bezier points and a simple method to estimate
the number of Bezier points when estimating the distribution function. In addition, we compared the
proposed methods with existing methods. Through numerical studies, the proposed methods showed
a better numerical performance than existing methods. For the choice of Bezier points, the proposed
method is quite robust to different types of distributions which are either symmetric or skewed. In
addition, L1 version of the leave-one-out cross validation to estimate the number of Bezier points is
quite accurate and stable for various types of distributions compared to least square cross validation,
the likelihood cross validation, and L2 version of the leave-one-out cross validation.
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