• 제목/요약/키워드: error correction algorithm

검색결과 470건 처리시간 0.033초

도어-차체 틈새 측정에 근거한 도어 장착 로보트의 위치 보정 알고리즘 개발 (Position Correction Algorithm of Door Mounting Robot based on Door-Chassis Gap Sleasure)

  • 김미경;강희준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.565-570
    • /
    • 1994
  • This work deals with finding a suitable position correction algorithm of industrial robot based on measuring gaps between door and chassis. The algorithm calculates correction quantities and then must allow visually acceptable door-chassis assembly take. The algorithm simulation is performed for a simple door-chassis model, and its effectiveness is addressed in terms of the predefined total unformity, line uniformity. In addition, the error sensitivity analysis of the rotation center of door due to the mismatch of robot grasping is performed using the algorithm.

  • PDF

Selection-based Low-cost Check Node Operation for Extended Min-Sum Algorithm

  • Park, Kyeongbin;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.485-499
    • /
    • 2021
  • Although non-binary low-density parity-check (NB-LDPC) codes have better error-correction capability than that of binary LDPC codes, their decoding complexity is significantly higher. Therefore, it is crucial to reduce the decoding complexity of NB-LDPC while maintaining their error-correction capability to adopt them for various applications. The extended min-sum (EMS) algorithm is widely used for decoding NB-LDPC codes, and it reduces the complexity of check node (CN) operations via message truncation. Herein, we propose a low-cost CN processing method to reduce the complexity of CN operations, which take most of the decoding time. Unlike existing studies on low complexity CN operations, the proposed method employs quick selection algorithm, thereby reducing the hardware complexity and CN operation time. The experimental results show that the proposed selection-based CN operation is more than three times faster and achieves better error-correction performance than the conventional EMS algorithm.

Systematic Odometry Error Correction을 이용한 이동로봇의 위치오차 보정 (A Study on Mobile Robot Posture Error Reduction Using Systematic Odometry Error Correction)

  • 강형석;이쾌희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.655-657
    • /
    • 1999
  • In this paper we will introduce an posture error reduction algorithm for Mobile Robot. We classified odometry error into two categories. and focus on systematic odometry error correction only. Because it is the primary reason for mobile robot navigation. For this procedure we used some robot specifications and modeled robot behavior. Through some experiment, we could obtain new system specs. After modeling, Robot navigation precision was improved.

  • PDF

라즈베리파이를 활용한 블루투스 Smart Ready 구현 및 RSSI 오차 보정 (Bluetooth Smart Ready implementation and RSSI Error Correction using Raspberry)

  • 이성진;문상호
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.280-286
    • /
    • 2022
  • In order to efficiently collect data, it is essential to locate the facilities and analyze the movement data. The current technology for location collection can collect data using a GPS sensor, but GPS has a strong straightness and low diffraction and reflectance, making it difficult for indoor positioning. In the case of indoor positioning, the location is determined by using wireless network technologies such as Wifi, but there is a problem with low accuracy as the error range reaches 20 to 30 m. In this paper, using BLE 4.2 built in Raspberry Pi, we implement Bluetooth Smart Ready. In detail, a beacon was produced for Advertise, and an experiment was conducted to support the serial port for data transmission/reception. In addition, advertise mode and connection mode were implemented at the same time, and a 3-count gradual algorithm and a quadrangular positioning algorithm were implemented for Bluetooth RSSI error correction. As a result of the experiment, the average error was improved compared to the first correction, and the error rate was also improved compared to before the correction, confirming that the error rate for position measurement was significantly improved.

Model Parameter Correction Algorithm for Predictive Current Control of SMPMSM

  • Li, Yonggui;Wang, Shuang;Ji, Hua;Shi, Jian;Huang, Surong
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1004-1011
    • /
    • 2016
  • The inaccurate model parameters in the predictive current control of surface-mounted permanent magnet synchronous motor (SMPMSM) affect the current dynamic response and steady-state error. This paper presents a model parameter correction algorithm based on the relationship between the errors of model parameters and the static errors of dq-axis current. In this correction algorithm, the errors of inductance and flux are corrected in two steps. Resistance is ignored. First, the proportional relations between inductance and d-axis static current errors are utilized to correct the error of model inductance. Second, the flux is corrected by utilizing the proportional relations between flux and q-axis static current errors under the condition that inductance is corrected. An experimental study with a 100 W SMPMSM is performed to validate the proposed algorithm.

온칩 메모리 내 다중 비트 이상에 대처하기 위한 오류 정정 부호 (Error correction codes to manage multiple bit upset in on-chip memories)

  • Jun, Hoyoon
    • 한국정보통신학회논문지
    • /
    • 제26권11호
    • /
    • pp.1747-1750
    • /
    • 2022
  • As shrinking the semiconductor process into the deep sub-micron to achieve high-density, low power and high performance integrated circuits, MBU (multiple bit upset) by soft errors is one of the major challenge of on-chip memory systems. To address the MBU, single error correction, double error detection and double adjacent error correction (SEC-DED-DAEC) codes have been recently proposed. But these codes do not resolve mis-correction. We propose the SEC-DED-DAEC-TAED(triple adjacent error detection) code without mis-corrections. The generated H-matrix by the proposed heuristic algorithm to accomplish the proposed code is implemented as hardware and verified. The results show that there is no mis-correction in the proposed codes and the 2-stage pipelined decoder can be employed on-chip memory system.

The Design of Reliable Graphics-DTV Signal Converter Using EDAC Algorithm in DTV System

  • Ryoo, Dong-Wan;Lee, Jeun-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2126-2130
    • /
    • 2003
  • In the integrated systems, that is integrated digital TV(DTV) internet and home automation, like home server, is needed integration of digital TV video signal and computer graphic signal. The graphic signal is operating at the high speed and has time-divide-stream. So the re-request of data is not easy at the time of error detection. therefore EDAC algorithm is efficient. In this paper, we show a scheme, that is integration of graphic and dtv format signal for DTV monitor display. This paper also presents the efficiency error detection auto correction(EDAC) for conversion of graphics signal to DTV video signal. A presented EDAC algorithms use the modified hamming code for enhancing video quality and reliability. A EDAC algorithm of this paper can detect single error, double error, triple error and more error for preventing from incorrect correction. And it is not necessary an additional memory. In this paper The comparison between digital TV video signal and graphic signal, a EDAC algorithm and a design of conversion graphic signal to DTV signal with EDAC function in DTV system is described.

  • PDF

Spotlight SAR 신호처리기법 FSA를 이용한 위성 자세오차로 인한 위상오차 영향분석 및 보정 (The Effect Analysis and Correction of Phase errors by Satellite Attitude Errors using the FSA for the Spotlight SAR Processing)

  • 심상흔
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.160-169
    • /
    • 2007
  • In this paper, we have described and simulated the effect analysis and correction of phase errors in the SAR rawdata induced by satellite attitude errors such as drift, jitter. This simulation is based on the FSA(Frequency Scaling Algorithm) for high resolution image formation of the Spotlight SAR. Phase errors produce the degradation of SAR image quality such as loss of resolution, geometric distortion, loss of contrast, spurious targets, and decrease in SNR. To resolve this problem, this paper presents method for correction of phase errors using the PGA(Phase Gradient Algorithm) in connection with the FSA. Several results of the phase errors correction are presented for Spotlight SAR rawdata.

FSK 통신 및 에러 정정을 통한 Intra-Body Communication (Electrostatic Coupling Intra-Body Communication Based on Frequency Shift Keying and Error Correction)

  • 조성호;박대진
    • 대한임베디드공학회논문지
    • /
    • 제15권4호
    • /
    • pp.159-166
    • /
    • 2020
  • The IBC (Intra-Body Communication) benefits from a wireless communication system for exchanging various kinds of digital information through wearable electronic devices and sensors. The IBC using the human body as the transmission channel allows wireless communication without the transmitting radio frequency waves to the air. This paper discusses the results of experiments on electrostatic coupling IBC based on FSK (Frequency Shift Keying) and 1 bit error correction. We implemented FSK communication and 1 bit error correction algorithm using the MCU boards and aluminum tape electrodes. The transmitter modulates digital data using 50% duty square wave as carrier signal and transmits data through human body. The receiver performs ADC (Analog to Digital Conversion) on carrier signal from human body. In order to figure out the frequency of carrier signal from ADC results, we applied zero-crossing algorithm which is used to detect the edge characteristic in computer vision. Experiment results shows that digital data modulated as square wave can be successfully transmitted through human body by applying the proposed architecture of a 1ch GPIO as a transmitter and 1ch ADC for as a receiver. Also, this paper proposes 1 bit error correction technique for reliable IBC. This technique performs error correction by utilizing the feature that carrier signal has 50% duty ratio. When 1 bit error correction technique is applied, the byte error rate at receiver side is improved around 3.5% compared to that not applied.

BLE 비콘 시스템에서 측위 정밀도 향상을 위한 위치 오차 보정 알고리즘 (Position Error Correction Algorithm for Improvement of Positioning Accuracy in BLE Beacon Systems)

  • 정준희;황유민;홍승관;김태우;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.63-67
    • /
    • 2016
  • 최근에 BLE 비콘의 낮은 배터리 소모와 저렴한 인프라 비용의 특징 때문에 실내 정밀 측위 시스템에 폭넓게 활용되고 있다. 하지만 기존의 BLE 비콘 기반 실내 측위 알고리즘은 사용자의 이동 속도 변화에 따라 유동적인 위치 오차 보정이 어렵다. 따라서 본 논문은 BLE 비콘을 활용한 Bounced cancellation 및 최소 거리 유지 알고리즘과 방향벡터를 이용한 측위오차 보정 기법을 결합한 위치 오차 보정 알고리즘을 제안했다. 본 논문의 실험 결과는 제안된 알고리즘이 기존의 실내 측위 알고리즘에 비해 유저 이동속도가 변화함에도 우수한 측위 성능을 보장하며 개선된 위치 오차 보정 성능을 나타냈다.