• Title/Summary/Keyword: error control

Search Result 6,557, Processing Time 0.037 seconds

Robust feedback error learning neural networks control of robot systems with guaranteed stability

  • Kim, Sung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.197-200
    • /
    • 1996
  • This paper considers feedback error learning neural networks for robot manipulator control. Feedback error learning proposed by Kawato [2,3,5] is a useful learning control scheme, if nonlinear subsystems (or basis functions) consisting of the robot dynamic equation are known exactly. However, in practice, unmodeled uncertainties and disturbances deteriorate the control performance. Hence, we presents a robust feedback error learning scheme which add robustifying control signal to overcome such effects. After the learning rule is derived, the stability is analyzed using Lyapunov method.

  • PDF

A Study on the Control System Design through Systems Engineering Approach (체계공학 접근방법을 통한 제어시스템 설계에 관한 연구)

  • 안장근
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-23
    • /
    • 2004
  • There are several kinds of error factors in control system design. All error factors must be analysed before designing the control system. Therefore, each error factor must be compensated and eliminated completely. Systems Engineering can solve these error factors. In this paper, systems engineering approach on control system design are studied under model based systems engineering with RDD-100, Matlab-Simulink. Systems Engineering shall be used in defense development from control system design to system development.

Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System (포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법)

  • Eom, Myunghwan;Song, Sinwoo;Park, Ilwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.

5-Axis Cross-Coupling Control System Based on a Novel Real-Time Tool Orientation Error Model (새로운 실시간 공구방향오차 모델에 기초한 5 축 연동제어 시스템)

  • Byun, Je-Hyung;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.48-53
    • /
    • 2010
  • 5-axis CNC machining now is getting popular because it can deal with complex shapes such as impeller, turbine blade and propeller without additional equipment or process, proving a set of various tool orientations. CAM software related to 5-axis machining is being developed quickly so that users can take advantage of potential capacities of 5-axis machine tools. However, only a few researches can be found in the area of control strategy development for 5-axis machining. This paper proposes a 5-axis cross-coupling control system based on a novel tool orientation error model. The proposed tool orientation error model provides accurate information on the tool orientation error in real time, which in turn enables directly controlling the tool orientation accuracy. The proposed control system also employs a contour error model to calculate the contour error and reflect it in the control as well. The accuracy of the proposed tool orientation error model is verified and the performance of the 5-axis cross-coupling control system in terms of both contouring and tool orientation accuracy is evaluated through computer simulations compared with existing 5-axis control systems.

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

Interpolation Error Compensation Method for PMSM Torque Control (PMSM 토크제어를 위한 보간오차 보상방법)

  • Lee, Jung-Hyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.391-397
    • /
    • 2018
  • This paper proposes a interpolation error compensation method for PMSM torque control. In PMSM torque control, two dimensions look-up table(2D-LUT) is used for current reference generation due to its stable and robust torque control performance. However, the stored data in 2D-LUT is discreet, it is impossible to store all over the operation range. To reduce the reference generation error in this region, the 2D-Interpolation method is conventionally used, however, this method still remains the error affected by the number of stored data. Besides, in the case stored by fixed unit, this error is increased in field weakening region because of the small number of stored data. In this paper, analyzing the cause of this interpolation error, and compensating the method to reduce this error. Proposed method is verified by the simulation and experiment.

Analysis and design of two types of digital repetitive control systems (두가지 이산 반복제어 시스템의 해석 및 설계)

  • 장우석;김군진;김준동;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1051-1059
    • /
    • 1992
  • Two types of digital repetitive control systems are analyzed and designed to reduce the error spectrum including not only harmonic but also non-harmonic components. First, a novel gain scheduling algorithm is suggested for conventional and modified repetitive controller is scheduled to reduce the infinite norm of error in frequency domain. For this, the relative error transfer function is mewly defined as the ratio of the error spectrum for the system with a repetitive controller to the error spectrum for the system with a repetitive controller to the error spectrum for the system without a repetitive controller. Secondly, as an alternative of a repetitive control system with the gain scheduling, a repetitive control system with higher order repetitve function is analyzed and designed, where instead of equal weightings, weightings of the higher order repetitive function is determined in such a way that the infinite norm of relative error transfer function is minimized. To show the validities of proposed methods, computer simulation results are illustrated for a typical disk drive head positioning servo system.

  • PDF

A P-Parallel Controller Design based on P-Control Ramp Response in Machine Tool (비례제어 경사응답에 기반한 공작기계의 비례-병렬 제어기 설계)

  • Gil, Hyeong-Gyeun;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.780-785
    • /
    • 2004
  • The work presented here deals with controller design by graphical method based on proportional control ramp response. The design aims at the improvement of transient response, disturbance rejection capability, steady-state error reduction with stability preservation. The first step is to generate tracking-error curve with proportional control only and decide the added error signal shape on the error curve. The effectiveness of the proposed controller is confirmed through the simulation and experiment.

  • PDF

A Design Method of Discrete Time Learning Control System (이산시간 학습제어 시스템의 설계법)

  • 최순철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.5
    • /
    • pp.422-428
    • /
    • 1988
  • An iterative learning control system is a control system which makes system outputs follow desired outputs by iterating its trials over a finite time interval. In a discrete time system, we proposed one method in which present control inputs can be obtained by a linear combination of the input sequence and time-shifted error sequence at previous trial. In contrast with a continous time learning control system which needs differential opreration of an error signal, the time shift operation of the error sequence is simpler in a computer control system and its effectiveness is shown by a simulation.

  • PDF

A Quantization Algorithm without Accumulative Error

  • Koh, Kyoung-Chul;Cho, Hyun-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.313-316
    • /
    • 1999
  • In this paper, a quantization algorithm by which the accumulative error can be prevented is presented. In digital control systems, the quantization cannot be avoided because of the finite word length of digital computers. The error due to quantization of the computed values may be tolerable in case of directly using them. In case of using the accumulated values, the error between sum of the original values and that of the quantized values becomes larger as the number of the values to be summed increases. Such an increasing accumulative error is critical for the control of precise NC machines, robots and autonomous vehicles. To solve this problem, a quantization algorithm without the accumulative error is presented. Basically, the algorithm is based on the feedback loop by which the accumulationive of the quantization error can be prevented. The error boundness of the proposed algorithm is proven and a computer simulation is performed to show the validity of the algorithm.

  • PDF