• 제목/요약/키워드: error analysis

검색결과 9,228건 처리시간 0.037초

자유곡면을 가공하는 공작기계 체적오차의 일반화 해석 (A Generalized Analysis of Volumetric Error of a Machine Tool Machining a Sculpture)

  • 고태조
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.39-47
    • /
    • 1995
  • This paper suggests generalize mathematica mode for the benefit of volumetric error analysis of a multi-axis machine tool machining a sculptured surfaces. The volumetric error, in this paper, is defined as a three dimensional error at the cutting point, which is caused by the geometric errors and the kinematic errors of each axis and alignment errors of the cutting tool. The actual cutting position is analyzed based on the form shaping model including a geometric error of the moving carriage, where a form shaping model is derived from the homogeneous transformation matrix. Then the volumetric error is obtained by calculating the position difference between the actual cutting position and the ideal one calculated from a Nonuniform Rational B-Spline named as NURES. The simulation study shows the effectiveness for predicting the behavior of machining error and for the method of error compensation.

  • PDF

OMM 시스템에서의 측정오차 해석 (The Analysis of Measuring Error in OMM System)

  • 이상준;김선호;김옥현
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.34-42
    • /
    • 1998
  • This paper describes an analysis of measuring error of on the machine measuring(OMM) system which directly measures machined surface dimensions using scanning probe on a CNC milling machine. 21 inch TV shadow mask mould clamped to a pallet was measured using PTP(point to point) measuring algorithm in OMM system and the results were compared with those using coordinate measuring machine(CMM). The OMM error was evaluated by probe error, stylus contact error, center shift error, repeatability, work-piece clamping error and etc. The results show that elastic deformation of the pallet is most affecting factor on the measuring error, thus pallet design and clamping method need very careful cosiderations.

  • PDF

전달오차와 백래쉬에 의한 기어 구동계의 비선형 동특성 해석 (Nonlinear Dynamic Analysis of Gear Driving System due to Transmission Error and Backlash)

  • 최연선;이봉현;신용호
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.69-78
    • /
    • 1997
  • Main sources of the vibration in gear driving system are transmission error and backlash. Transmission error is the difference of the rotation between driving and driven gear due to tooth deformation and profile error. Vibro-impacts induced by backlash between meshing gears lead to excessive vibration and noise in many geared rotation systems. Nonlinear dynamic characteristics of the gear driving system due to transmi- ssion error and backlash are investigated. Transmission error is calculated for spur gear. Nonlinear equation of motion for the gear driving system is developed with the calculated transmission error and backlash. Numerical analysis of the equation and the experimental results show the existence of meshing frequency, superharmonic compon- ents. Instability of the gear driving motion is found on the basis of Mathieu equation. Rattle vibration due to backlash is also discussed on the basis if nonlinear jump phenomenon.

  • PDF

반도체산업에서의 인적오류제어방법 및 연구 (A method and analysis of human-error management of a semiconductor industry)

  • 윤용구;박범
    • 대한안전경영과학회지
    • /
    • 제8권1호
    • /
    • pp.17-26
    • /
    • 2006
  • Basis frame-work's base in a semiconductor industry have gas, chemical, electricity and various facilities in bring to it. That it is a foundation by fire, power failure, blast, spill of toxicant huge by large size accident human and physical loss and damage because it can bring this efficient, connect with each kind mechanical, physical thing to prevent usefully need that control finding achievement factor of human factor of human action. Large size accident in a semiconductor industry to machine and human and it is involved that present, in system by safety interlock defect of machine is conclusion for error of behaviour. What is not construing in this study, do safety in a semiconductor industry to do improvement. Control human error analyzes in human control with and considers mechanical element and several elements. Also, apply achievement factor using O'conner Model by control method of human error. In analyze by failure mode effect using actuality example.

CTC와 SCADA간 정보전송 프로토콜에 대한 프레임 에러율 분석 (Analysis for Frame Error Rate of a Data Transmission Protocol between CTC and SCADA)

  • 강문호;이재호;황종규;박영수
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.296-301
    • /
    • 2004
  • This paper addresses an analysis for a railway data transmission protocol-Ethernet based data transmission between the CTC(Centralized Traffic Control System) and the SCADA(Supervisory Control and Data Acquisition) system. Fame error rates of the data transmissions are calculated and compared for the two cases that the CTC/SCADA has an extra data transmission error control(CRCI6) besides the inherent error control of the Ethernet(CRC32), and that the CTC/SCADA has no extra data transmission error control. With simulation results it has been verified that the extra data transmission error control(CRC16) contributes to lowering the frame error rate.

Human Error Analysis Technique and Its Application to Marine Accidents

  • Na, Seong;Kim, Hong-Tae;Kim, Hye-Jin;Ha, Wook-Hyun
    • 한국항해항만학회지
    • /
    • 제34권2호
    • /
    • pp.145-152
    • /
    • 2010
  • The management of safety at sea is based on a set of internationally accepted regulations and codes, governing or guiding the design and operation of ships. The regulations most directly concerned with human safety and protection of the environment are, in general, agreed internationally through the International Maritime Organization(IMO). IMO has continuously dealt with safety problems and, recognized that the human element is a key factor in both safety and pollution prevention issues(IMO, 2010). This paper proposes a human error analysis methodology which is based on the human error taxonomy and theories (SHELL model, GEMS model and etc.) that were discussed in the IMO guidelines for the investigation of human factors in marine casualties and incidents. In this paper, a cognitive process model, a human error analysis technique and a marine accident causal chains focused on human factors are discussed, and towing vessel collision accidents are analyzed as a case study in order to examine the applicability of the human error analysis technique to marine accidents. Also human errors related to those towing vessel collision accidents and their underlying factors are discussed in detail.

철도사고 인적오류 분석을 위한 지원시스템 프레임웍 설계 (A Framework for Computerized Human Error Analysis System - Focused on the Railway Industry)

  • 신민주;백동현;김동산;윤완철
    • 대한인간공학회지
    • /
    • 제27권3호
    • /
    • pp.43-52
    • /
    • 2008
  • Human errors are now considered as the most significant source of accidents or incidents in large-scale systems such as aircraft, vessels, railway, and nuclear power plants. As 61% of the train accidents in Korea railway involving collisions, derailments and fires were caused by human errors, there is a strong need for a systematic research that can help to prevent human errors. Although domestic railway operating companies use a variety of methods for analyzing human errors, there is much room for improvement. Especially, because most of them are based on written papers, there is a definite need for a well-developed computerized system supporting human error analyzing tasks. The purpose of this study is to propose a framework for a computerized human error analysis system focused on the railway industry on the basis of human error analysis mechanism. The proposed framework consists of human error analysis (HEA) module, similar accident tracking (SAT) module, cause factor recommendation (CFR) module, cause factor management (CFM) module, and statistics (ST) module.

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • 한국측량학회지
    • /
    • 제37권2호
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

Frequency Tracking Error Analysis of LQG Based Vector Tracking Loop for Robust Signal Tracking

  • Park, Minhuck;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.207-214
    • /
    • 2020
  • In this paper, we implement linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) instead of conventional extended Kalman filter based vector tracking loop (EKF-VTL). The LQG-VTL can improve the performance compared to the EKF-VTL by generating optimal control input at a specific performance index. Performance analysis is conducted through two factors, frequency thermal noise and frequency dynamic stress error, which determine total frequency tracking error. We derive the thermal noise and the dynamic stress error formula in the LQG-VTL. From frequency tracking error analysis, we can determine control gain matrix in the LQG controller and show that the frequency tracking error of the LQG-VTL is lower than that of the EKF-VTL in all C/N0 ranges. The simulation results show that the LQG-VTL improves performance by 30% in Doppler tracking, so the LQG-VTL can extend pre-integration time longer and track weaker signals than the EKF-VTL. Therefore, the LQG-VTL algorithm is more robust than the EKF-VTL in weak signal environments.

절점이동과 단항증가법에 의한 이차원 평면문제의 적응 유한요소 해석 (Adaptive Finite Element Analysis of 2-D Plane Problems Using the rp-Method)

  • 박병성;임장근
    • 한국전산구조공학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2004
  • 최근, 유한요소해석견과의 신뢰도를 향상시키기 위하여 활발하게 연구되고 있는 적응유한요소해석은 반복계산을 통해서 해석결과의 오차가 사용자에 의해 지정된 허용오차와 같아지도록 하는 해석방법이다. 이와 간은 적응유한요소해석은 해석결과의 오차평가와 이에 따른 유한요소의 재구성과정으로 나누어진다. rp방법에서는 절점의 위치를 이동시켜 요소의 크기를 조절하는 r방법과 형상함수찻수를 증가시키는 p방법을 동시에 적용함으로써 적응해석의 유효성을 향상시키고자 하였다. 제안한 rp방법의 특성을 규명하고 적응해석의 유효성을 보이기 위하여 전형적인 이차원 평면문제들을 해석하고 그 결과를 검토하였다.