• Title/Summary/Keyword: erosional surface

Search Result 39, Processing Time 0.028 seconds

Sedimentologic Characteristics of Tidal Flat Sediments after the Construction of Sea Dyke in Kwangyang Bay, South Coast of Korea (호안 건설 후 광양만 조간대 퇴적물의 퇴적학적 특성)

  • Ryu, Sang-Ock;Sin, Yong-Sik
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.659-669
    • /
    • 2006
  • In Kwangyang Bay, the south coast of Korea, surface sediments and sedimentation rates have been investigated to understand the distribution and variation of tidal flat sediments after the construction of sea dyke. The mean grain size of the surface sediments during autumn is coarser, and decrease from winter to summer except for temporarily coarsening in the early summer. The depositional processes are prevalent in spring, while erosional processes are dominant in summer and autumn. This seasonal variation of sedimentary processes show similar results monitored from 2001 to 2003 before the construction of sea dyke. In the northern area of the bay, net annual sedimentation rates show similar results monitored from 2001 to 2003 before the construction of sea dyke. However, in the western area of the bay, net annual sedimentation rates change from erosion-dominated to deposition-dominated environments. It is considered that the western area of the bay is changed to erosion-dominated environments, as a result of the changes of hydrodynamic conditions, caused by sea dyke construction.

Reflection and perspective of the geomorphology in Korea (한국 지형학의 50년 회고와 전망)

  • ;Oh, Kyoung-Seob
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.2
    • /
    • pp.106-127
    • /
    • 1996
  • In Korea, modern geomorphology has developed as one of main subjects in geography, such as in Europe. Geomorphology is one of the most advanced specialties in the geography dicipline, since foundation of Korean Geographical Society in 1945. Untill 1960's study, first generation of the Korean geomorphologists trained the younger ones, together with energetic research activities. Their great works in education and research established the base of ulterier development of the geomorphology in Korea. Since 1970s, research manpower and quality has incresed rapidly, partly due to the various international activities and cooperations of Korean geomorphologists. Owing to above development, Korean geomorphologist was able to found "The Geomorphological Association of Korea" in 1990 and publish "Journal of GAK", since 1994. Furthermore, geomorphologists are playing important roles in interdisciplinary academic societies, such as "The Korean Quaternary Assocition". Still 1960s, our research had focused on the identification and interpretation of erosional surfaces in Korea Peninsular. Of course, W.M. Davis's "Geographical Cycle Theory" and L.C. King's "Pedimentation Theory" had a great influence on the Koerans' works. After 1970s, the study of erosional surface played the important role in setting up the morphoclimatic viewpoint and methodology. Research scope tend to be notably broad and various than it was untill 1960's. Disposotion of the scientific methods and techniques become more and more apparent. These trends of research has settled precise descreption and interpretation of actual landforms, based on the careful field works, scientific measuring, and analisis, rather than methodology focused on the particular master theories. Recent geomorphological researches show the scope from climatic geomorphology and Quaternary geomorphology to granite and limestone weathering, pedo-geomorphogenic environment and periglacial landforms, focused on the small-to-medium scales. And then there have been new trying to interprete erosional surfaces such as hillslopes and terraces. Also, studies of coastal and plain landforms have been successfully developed. Recent new trends show the quantitative and analytic modelling using field measurement and laboratory work, and study on the human impacts on the natural landforms.y on the human impacts on the natural landforms.

  • PDF

The characteristics of quaternary fault and coastal terrace around Suryumri area. (수렴리 일대에 발달하는 신기단층 및 해안단구의 층서 고찰)

  • 이병주;감주용;양동윤;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.133-149
    • /
    • 2000
  • The study area which contains the coastal terrace of the southeastern part of Korean peninsula, well developed the lineaments which are NNE, NE and WNW directions. The area crops out Cretaceous sedimentary rocks and granite porphyry, Tertiary conglomerate, tuffite and basalt and Quarternary deposits. Coastal terraces are subdivided into low, middle and upper terraces(LT, MT, UT) based on the topographic levels. Terrace gravels are deposited on these wave-cut erosional surface during the initial lowering stage of sea level fluctuation. Terrace gravels are typified by granule to pebble layers with slightly inclined beddings. These gravels are interpreted as beach gravels belonging to berm or swash zone based on the present distribution of beach gravels. The Suryum fault is characterized by the thrust which is gradationally changing the strike from ENE to NNE. The extension of the fault is about 200m and Maximum displacement is about 1.5m.

  • PDF

Classification and Forming Processes of Low Relief Landforms in the Korean Peninsula (한반도 평탄지의 유형분류와 형성과정)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.1
    • /
    • pp.31-55
    • /
    • 2009
  • This research aims 1) to characterize the spatial distribution of low relief landforms (plains) via analyses of a Digital Elevation Model (DEM), 2) to classify plains according to morphological and genetic similarity, and 3) to develop a model to explain forming processes of plains in the Korean peninsula. Plains can easily be separated from high relief mountaneous areas by analyzing the DEM. The overall morphological and locational characteristics of plains can be categorized into lava plains, fluvial-marine plains, erosional plains, intermontane basins, and higher ground plains. It is concluded that the characteristic of each plain type is decided by base-level changes caused by tectonic uplift and sea-level changes, and topological relationship of different rock types. Different plain types do not exist independently, but connected with each others along stream networks. The model developed is able to combine the morphological characteristics of plains with the channel network to conceptualize characteristics and development pathways of plains in the Korean Peninsula.

Critical Comments on Akagki's Pediment Morphology in Korea (한국 Pediment 지형의 연구성과에 관한 비판과 문제점)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.99-120
    • /
    • 2005
  • It is a wrong decision to use only topographic and geological maps for the study of pediment morphology in Korea. For the study of pediment morphology it is necessary to survey the earth structure by field techniques. In Korea, pediments are mostly found in granite areas with hardrock cover. But, pediments also developed in gneiss areas and what is worse in limestone areas. So, all areas in Korea developed pediment morphology. Only in South Korea pediments show a direction from south to north or from west to east. They developed only in right angles to each other, either parallel or in right angles to the strike, depending on the bedrock structure. Pediments are found in two levels. The upper level pediments are correlated with the lower level erosion surface. Besides this pediments are found in Hoenggye-ri of the Taegwolryong area in a third level 800m above sea level. The pediments developed in basins, at the lower margins of steep slopes dividing three levels of erosion surfaces and around the residual mountains on the erosion surfaces. The first belong to the early stage of pedimentation, the second to the middle stage and the third to the last stage. Also, in Korea monadnock and residual mountain have developed the pediments are correlated the slope of the hinter mountains. Akagki states that the only pedimentation times have been times of arid climate and that they are dissected by gulley erosion with climatic change, but writer's study proves that pedimentation takes place with eustatic movement, reckless defore-station and convectional rain. These facts indicate that the landforms, geological character and process of erosional cycle of the pediments in Korea resemble much those in the Chugoku Mountains of south wertern Japan, but they are larger in scale than those in the Chugoku Mountains. In conclusion, while Akagki emphasizes the geological character and climatic change in pedimentation, the writer studies prove that eustatic movements, especially the sea level rise after the Wurm age are important factors for pedimentation. Besides this the author's studies allow a classification of gentle slopes.

Late Quaternary Sedimentation in the Yellow Sea off Baegryeong Island, Korea (한국 황해 백령도 주변해역 후 제4기 퇴적작용)

  • Cho, MinHee;Lee, Eunil;You, HakYoel;Kang, Nyen-Gun;Yoo, Dong-Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.145-153
    • /
    • 2013
  • High-resolution chirp profiles were analyzed to investigate the echo types of near-surface sediments in the Yellow Sea off the Baegryeong Island. On the basis of seafloor morphology and subbottom echo characters, 7 echo types were identified. Flat seafloor with no internal reflectors or moderately to well-developed subbottom reflectors (echo type 1-1 and 1-2) is mainly distributed in the southern part of the study area. Flat seafloor with superposed wavy bedforms (echo type 1-3) is also distributed in the middle part. Mounded seafloor with either smooth surface or superposed bedforms (echo type 2-1, 2-2, and 2-3) occurs in the middle part of the study area. Irregular and eroded seafloor with no subbottom reflectors (echo type 3-1) is present in the northern part of the study area off the Baegryeong Island. According to the distribution pattern and sedimentary facies of echo types, depositional environments can be divided into three distinctive areas: (1) active erosional zone due to strong tidal currents in the northern part; (2) formation of tidal sand ridges in response to tidal currents associated with sea-level rise distributed in the middle part; and (3) transgressive sand sheets in the southern part. Such a depositional pattern, including 7 echo types, in this area reflects depositional process related to the sea-level rise and strong tidal currents during the Holocene transgression.

A study on the granulometric and clastshape characteristic of gravel terrace deposit at Jeongdongjin area (정동진 단구 자갈층과 충진 물질의 입도 및 형상 특성에 대한 연구)

  • Kim, Jong Yeon;Yang, Dong Yoon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-33
    • /
    • 2016
  • Samples from newly exposed outcrop of sedimentary layers forming Jeongdongjin coastal terrace in Gangreung area are collected and analyzed to find the sedimentary environment. The site are located at the gentle hillslope of the terrace surface area. The height of the outcrop is about 8m and the altitude of it's highest part is 68~73m MSL. The lowest part of this out crop is the partly consolidated sand layer with gravel veneer within it. It is found that this part is not in-situ weathered sand stone through the OSL method. This sand layer is overlain by the gravel layer with sand matrix. The shapes of the gravels from this part are mainly 'platy', 'elongated', and 'bladed' by the index of Sneed and Folk(1958). In addition, mean roundness is not so high. It is sceptical to regard this part as marine sediments which are continuously exposed to erosional processes. The boundary between the lowest sand layer and gravel layer showing the abrupt change in forming material without any mixture or transitional zone, so gravels are seemed to deposited after some degree of consolidation of the lowest sand layer. In addition, the hight of the boundary between layers are changed by the place, so the surface of the partly consolidated sand layer is not flat and has irregularity on topography when it buried by gravels. Main part of this out crop is the poorly sorted coarse gravel(22.4mm) with sand matrix($1.36{\phi}$) layer with at least 2m thick covering the relatively fine gravels discussed above. Over 20% of particles have 'very platy', 'very elongated' and 'very bladed' shape and only less than 5% of particles have 'compact' shape, So this particles are also very hard to be regard as marine gravels which are abraded by marine processes. It can be concluded that this gravel layer formed by fluvial processes rather than coastal processes base on the form of the clast and sedimentary structure. The gravel layer is covered by fine($3{\sim}4{\phi}$) material layers of psudo-gleization which showing inter-bedding of red and white layers. Chemical composition of matrix and other fine materials should be analyzed in further studies. It is attempted to fine the burial ages of the sediment using OSL method, but failed by the saturation. So it can be assumed that these sediments have be buried over 120ka.

Clay Mineral Distribution and Characteristics in the Southeastern Yellow Sea Mud Deposits (황해 남동 이질대 퇴적물의 점토광물분포 및 특성)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Yi, Hi-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.163-173
    • /
    • 2012
  • In this study, we determined the relative clay mineral composition of 51 surface sediments from SEYSM (Southeastern Yellow Sea Mud) (northern part 25, southern part 26) and 30 river sediments inflow to Yellow Sea using the semi-quantitative X-ray diffraction analyses. In addition to we analyzed illite characteristics of the same samples. The clay-mineral assemblage is composed of illite (61~75%), chlorite (14~24%), kaolinite (9~14%), and smectite (1~7%), in decreasing order. The average composition of each clay mineral is not different from northern part to southern part of SEYSM except a little higher kaolinite and lower smectite content in northern part. Smectite content generally has reverse relationship with illite content. Mineralogical characteristics of illite such as illite crystallinity index also is not different between two areas and show very narrow range (0.18~0.24 ${\Delta}^{\circ}2{\theta}$). Our results reveal that clay mineral composition and illite characteristics are nearly the same between northern and southern part of SEYSM. Characteristics of surface sediments in SEYSM is closer to Korean river sediments than Chinese Hanghe sediments, however it is necessary to investigate further study including Yangtze river sediments. This study conclude that most of surface sediments in SEYSM attribute to the supply of considerable amount of sediments from the nearby Korean rivers. The large sediment budget and high accumulation rate in the SEYSM can be explained by erosion and reworking of surface sediments in this area. Tidal and regional current system around SEYSM might contribute these erosional and depositional regimes.

A Study on the Transport Mechanism of Tidal Beach Sediments I. Deukryang Bay, South Coast of Korea (조간대성 해빈 퇴적물의 이동양상에 관한 연구 I. 한국 남해안의 득량만)

  • Ryu, Sang-Ock;Kim, Joo-Young;Chang, Jin-Ho;Cho, Yeong-Gil;Shin, Sang-Eun;Eun, Go-Yo-Na
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.221-235
    • /
    • 2006
  • In order to understand the transport mechanism of tidal beach sediments in Deukryang Bay, south coast of Korea, beach profiles, surface sediments, sedimentation rates and hydrodynamic conditions have been investigated. The beach is composed of a steep beach face and gentle low-tide terrace, showing general morphologic characteristics of tide dominated beach. Central beach face of an indented coast becomes flattened in summer, but ridge and runnel system developed in other seasons makes the beach profile rather irregular. These seasonal variations of beach profiles and sedimentation rate indicate that beach sedimentation is mainly controlled by both tide and wave processes. Erosion is prevalent in winter when strong wind wave is dominant, while deposition is dominant in other seasons. However, central beach showed an apparent erosional phase in summer. This is caused by strong waves induced by southerly strong winds occurring ephemerally during the summer. On the other hand, sedimentation rates are -89.2 mm/yr on the central beach and 60.5 mm/yr and 38.2 mm/yr on the sides. This result suggests that sediments are eroded on the central beach and subsequently transported to the both sides. Therefore, the central part of Sumun beach, used as a beach bathing site, will be continuously eroded, if nearby dyke continues to prevent the sediment supply from sources.

Drilling Gas Hydrate at Hydrate Ridge, ODP Leg 204

  • Lee Young-Joo;Ryu Byong-Jae;Kim Ji-Hoon;Lee Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.663-666
    • /
    • 2005
  • Gas hydrates are ice-like compounds that form at the low temperature and high pressure conditions common in shallow marine sediments at water depths greater than 300-500 m when concentrations of methane and other hydrocarbon gases exceed saturation. Estimates of the total mass of methane carbon that resides in this reservoir vary widely. While there is general agreement that gas hydrate is a significant component of the global near-surface carbon budget, there is considerable controversy about whether it has the potential to be a major source of fossil fuel in the future and whether periods of global climate change in the past can be attributed to destabilization of this reservoir. Also essentially unknown is the interaction between gas hydrate and the subsurface biosphere. ODP Leg 204 was designed to address these questions by determining the distribution, amount and rate of formation of gas hydrate within an accretionary ridge and adjacent basin and the sources of gas for forming hydrate. Additional objectives included identification of geologic proxies for past gas hydrate occurrence and calibration of remote sensing techniques to quantify the in situ amount of gas hydrate that can be used to improve estimates where no boreholes exist. Leg 204 also provided an opportunity to test several new techniques for sampling, preserving and measuring gas hydrates. During ODP Leg 204, nine sites were drilled and cored on southern Hydrate Ridge, a topographic high in the accretionary complex of the Cascadia subduction zone, located approximately 80km west of Newport, Oregon. Previous studies of southern Hydrate Ridge had documented the presence of seafloor gas vents, outcrops of massive gas hydrate, and a pinnacle' of authigenic carbonate near the summit. Deep-towed sidescan data show an approximately $300\times500m$ area of relatively high acoustic backscatter that indicates the extent of seafloor venting. Elsewhere on southern Hydrate Ridge, the seafloor is covered with low reflectivity sediment, but the presence of a regional bottom-simulating seismic reflection (BSR) suggests that gas hydrate is widespread. The sites that were drilled and cored during ODP Leg 204 can be grouped into three end-member environments basedon the seismic data. Sites 1244 through 1247 characterize the flanks of southern Hydrate Ridge. Sites 1248-1250 characterize the summit in the region of active seafloor venting. Sites 1251 and 1252 characterize the slope basin east of Hydrate Ridge, which is a region of rapid sedimentation, in contrast to the erosional environment of Hydrate Ridge. Site 1252 was located on the flank of a secondary anticline and is the only site where no BSR is observed.

  • PDF