• Title/Summary/Keyword: erosion study

Search Result 1,812, Processing Time 0.029 seconds

A Study on High Temperature Particles-Erosion of Hard Coatings (경질 코팅의 고온 입자침식 현상 연구)

  • 이의열;김종하
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.291-295
    • /
    • 2003
  • Many steam turbine components encounter solid particle erosion damage. It has been reported that particle erosion damage is caused by oxide scale exfoliation from boiler tubes. One of the most effective solutions to combat the erosion damage is the application of erosion resistant coatings on the turbine components. In this study, particle erosion resistance for various hard coatings such as nitride, Cr carbide and boride coatings was evaluated under the simulated erosion conditions of steam turbines. Based on the particle erosion tests, the boride coating was found to be more superior to others.

A Study on Erosion Properties of Hot Pressed Sialon Ceramics (열간가압소결법으로 제조된 Sialon세라믹스의 Erosion특성에 관한 연구)

  • 여인웅;임대순;박동수
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.42-47
    • /
    • 1997
  • Three kinds of the sialon ceramics with and without TiN additions were prepared by hot pressing to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens to study the effect of additives on the mechanical properties. A gas blast type erosion tester was employed to examine erosion behavior of the specimens up to $600^{\circ}C$. Erosion tests showed an increase of erosion rate up to 40$0^{\circ}C$ and a gradual decrease of erosion rate up to 50$0^{\circ}C$ for all kinds of sialon. The results also showed that erosion rates of the sialons were controlled better by microstructural factors than by mechanical properties including fracture toughness and hardness.

Effect of Transport Capacity Formula on Spatial Distribution of Soil Erosion

  • Nguyen, Van Linh;Yeon, Minho;Cho, Seongkeun;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.150-150
    • /
    • 2021
  • Soil erosion due to climate change is one of the global environmental issues. Especially, Korea is vulnerable to soil erosion as the frequency of extreme rainfall events and rainfall intensity are increasing. Soil erosion causes various problems such as reduced farmlands, deterioration of water quality in rivers, etc. To these severe problems, understanding the process of soil erosion is the first process. Then, it is necessary to quantify and analyze soil ersoion using an erosion model. Soil erosion models are divided into empirical, conceptual, and physics-based models according to the structures and characteristics of models. This study used GSSHA (Gridded Surface Subsurface Hydrologic Analysis), the physics-based erosion model, running on WMS (Watershed Modeling System) to analyze soil erosion vulnerability of the CheonCheon watershed. In addition, we compared the six sediment transport capacity formulas provided in the model and evaluated the equations fir on this study site. Therefore, this result can be as a primary tool for soil conservation management.

  • PDF

Evaluating Erosion Risk of Revegetated Cutslope with Seed Spraying (식생기반재 뿜어붙이기의 비탈면 녹화이후 침식 안정성 평가 방법)

  • Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.63-76
    • /
    • 2016
  • Slope revegetation refers to the use of vegetation and construction to protect a barren slope devastated by road and building construction. Among many revegetation strategies, hydroseeding has been widely utilized to stabilize barren slopes and has become the representative approach. Previous studies on slope stability have been conducted from a civil engineering perspective, mainly evaluating the stability of cut-slopes on solid bedrock and the use of concrete structures to stabilize devastated slopes. This study was conducted to develop a method to evaluate erosion risk of revegetated cut-slopes, based on criteria derived from previous studies. Twenty-five factors were surveyed on both on-the-spot erosion slopes and non-erosion slopes after slope revegetation to compare slope types. The scores of all non-erosion slopes exceed 80 score while erosion slopes are 80 below. Erosion slopes got the range of 68-74 score while non-erosion slopes got the range of 81-100 score in the first result which was not applied for weighted-values. The scores of all non-erosion slopes exceeded 3.10, while erosion slopes were below 3.10. Erosion slopes were in the range of 2.73-3.09, while non-erosion slopes were in the range of 3.15-3.90 in the second result, which was applied with weighted-values according to the AHP result from a previous study.

A Study on Erosion Properties of Sialon Ceramics by Hot-Pressing (열간가압소결법으로 제조된 Sialon세라믹스의 고온 Erosion 특성에 관한 연구)

  • 여인웅;임대순;박동수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.20-24
    • /
    • 1996
  • Three kinds of the sialon ceramics with and without TiN additions were hot pressed. Hardness and fracture toughness were measured with prepared specimens to study the effect of additives on the mechanical properties. A gas blast type erosion tester was employed to examine erosion behavior of the specimens up to 600 $^{\circ}$C. Erosion tests showed an increase of erosion rate up to 400 $^{\circ}$C and a gradual decrease of erosion rate 500 $^{\circ}$C for all kinds of sialon. The results also showed that erosion rates of the sialons were controlled better by microstructure factors than by mechanical properties such as fracture toughness.

  • PDF

Development and Application of Integrated System with SATEEC, nLS and USPED for Gully Erosion Evaluation (걸리 침식 평가를 위한 SATEEC, nLS, USPED 연계 시스템의 개발 및 적용)

  • Kang, Hyunwoo;Park, Youn Shik;Kim, Nam Won;Ok, Yong Sik;Jang, Won Seok;Ryu, Ji Chul;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.637-647
    • /
    • 2010
  • The Universal Soil Loss Equation (USLE)-based modeling systems have been widely used to simulate soil erosion studies. However the GIS-based USLE modeling systems have limitation in gully erosion evaluation which is one of the most important factor in soil erosion estimation. In this study, the integrated soil erosion evaluation system using with Sediment Assessment Tool for Effective Erosion Control (SATEEC) system, nLS and Unit Stream Power-based Erosion/Deposition (USPED) model was developed to simulate gully erosion. Gully head location using nLS model, USPED for gully erosion, and the SATEEC estimated sheet and rill erosion were evaluated and combined together with the integrated soil erosion evaluation system. This system was applied to the Haean-myeon watershed, annual average sediment-yield considering sheet, rill and gully erosion was simulated as 101,933 ton/year at the study watershed. if the integrated soil erosion evaluation system is calibrated and validated with the measured data, this system could be efficiently used in developing site-specific soil erosion best management system to reduce soil erosion and muddy water inflow into the receiving waterbody.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System (SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석)

  • Yoo, Dongsun;Ahn, Jaehun;Yoon, Jongsuk;Heo, Sunggu;Park, Younshik;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

A Study on the Management Guidelines of Erosion Control Facilities in National Forests (I) - The Inspection Results of Erosion Control Facilities from 2009 to 2011 - (국유림 내 사방시설 관리방안에 관한 연구(I) - 2009~2011년 국유림 내 사방시설 점검 결과를 중심으로 -)

  • Lee, Sang-Ho;Jung, Cha-Sik;Kim, Jeong-Sig;Jung, Ho-Jin;Kim, Min-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.251-258
    • /
    • 2012
  • This study was conducted to analyze field inspection results of erosion control facilities within national forests and to suggest maintenance and management plan of erosion control facilities. The objects amounted to a total of 1,628 locations, comprising 308 erosion control dams and 1,320 erosion control areas (1,269.05 ha). The field inspections were conducted during March-June each year. The erosion control dams inspected were constructed during 1991-2005, with 96.4% of them, or 297 dams, constructed in or after 2000. The erosion control areas were constructed during 1986-2005, with 68.6% of them, or 903 areas, constructed in or after 2000. As for erosion control dams, there were 205 concrete erosion control dams and 68 concrete with boulder pitching erosion control dams, respectively, with 296 out of a total of 308 erosion control dams in a good condition. As for erosion control areas, there were many erosion control structures using stone masonry works and gabions, with 1,245 out of a total of 1,320 (94.3%) erosion control areas in a good condition. Overall, erosion control facilities within national forests were in a good condition, amply fulfilling their functions. As for erosion control facilities in a bad condition, they must be made to accomplish the goals of erosion control works through supplementation and repairs without fail. In addition, for the systematic maintenance and management of existing erosion control facilities and erosion control facilities constructed in the future as part of erosion control works, the construction of an erosion control facility management system is urgently needed.

Study on Topsoil Erosion Indices for Efficient Topsoil Management (효율적 표토 관리를 위한 표토침식지표 연구)

  • Jung, Younghun;Kum, Donghyuk;Han, Jeongho;Jang, Chunhwa;Yang, Jay E;Lim, Kyoung Jae;Kim, Ki-Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.543-555
    • /
    • 2015
  • The existing standard for soil erosion risk assessment has limitations in sustainable topsoil management since the fixed criteria are applied to determination of soil erosion risk areas regardless of land use types. It may not be necessary to apply soil erosion best management practices to agricultural areas with high potential of soil erosion because human or economic damage derived from soil erosion might be tiny in that region. Furthermore, the fixed criterion with absolute values can select too many hot spots of soil erosion to conduct efficient soil erosion management. Thus, objective of this study was to suggest the relative criteria using statistical analysis for efficient soil erosion management. In future, the relative indices for soil erosion prevention should be improved to provide a priority of soil erosion management considering economic damage from soil erosion or functional values of soil with quantitative soil erosion. Additional researches will be needed to reflect a regional characteristics and to consider various land use types and different criteria.