• Title/Summary/Keyword: erosion mechanism

Search Result 125, Processing Time 0.027 seconds

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Analysis on the Rainfall Driven Slope Failure Adjacent to a Railway : Flume Tests (강우로 인한 철도 연변사면의 활동분석 : 실내모형실험)

  • SaGong Myung;Kim Min-Seok;Kim Soo-Sam;Lee In-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.83-91
    • /
    • 2006
  • Recently, the intensive rainstorm possibly induced by global warming plays a key role on the instability of railway adjacent slopes. The instability of slopes results as covering and loss of railway lines induced by slided soil mass. According to the site investigation on the failed slopes triggered by rainfall, low types of slope failure were observed: shallow, intermediate, gully erosion, and soil-rock interface failures. The observation reveals the different characteristics of slope failure depending on the thickness of soil layer, morphological features of slope, etc. Based upon the observations, flume tests were conducted to analyze the sliding mechanism of each failure. The variables of flume test are soil layer thickness, rainfall intensity, and morphology of slope under the constant condition of the percentage of fine, initial soil moisture content, slope angle and compaction energy. Test results show that shallow failure was mostly observed from the surface of the slope and caused by the soil erosion; in addition, compared to the other types of failure, the occurrence of initial erosion is late, however, the development of erosion is fast. In gully erosion failure, the collected water from the water catchment area helps erosion of the upper soil layer and transfer of residual corestone, which impedes the erosion process once the upper soil layers are eroded and corestone are exposed. The soil-rock interface failure shows the most fast initial erosion process among the failure types. Interestingly, the common feature observed from the different types of failure was the occurrence of the initial deformation near the toe of slopes which implies the existence of surbsurface flow along the downslope direction.

An investigation on the ground collapse mechanism induced by cracks in a non-pressurized buried pipe through model tests (모형시험을 통한 비압력 지중관거 균열로 인한 지반함몰 메커니즘 연구)

  • Kim, Yong-Key;Nam, Kyu-Tae;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.235-253
    • /
    • 2018
  • Groundwater flow induced by cracks in a buried pipe causes ground loss in the vicinity of it which can lead to underground cavities and sinkhole problems. In this study, the ground collapse mechanism and the failure mode based on an aperture in the pipe located in cohesionless ground were investigated through a series of physical model studies. As the influence parameters, size of the crack, flow velocity in the pipe, groundwater level, ground cover depth and ground composition were adopted in order to examine how each of the parameters affected the behavior of the ground collapse. Influence of every experimental condition was evaluated by the final shape of ground failure (failure mode) and the amount of ground loss. According to the results, the failure mode appeared to be a 'Y' shape which featured a discontinuous change of the angle of erosion when a groundwater level was equal to the height of the ground depth. While in the case of a water table getting higher than the level of ground cover depth, the shape of the failure mode turned to be a 'V' shape that had a constant erosion angle. As the height of the ground depth increased, it was revealed that a mechanism where a vertically collapsed area which consisted of a width proportional to the ground height and a constant length occurred was repeated.

A Study on the Trouble of Turbine EHC System by Chloride (염소성분에 의한 터빈 EHC계통 손상에 관한 연구)

  • Kim, Seung Min;Yang, Cheon Gyu;Yoon, Gi Nam;Jung, Jae Won;Shin, Yeul Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.366-372
    • /
    • 2000
  • In a power plant, it is generally accepted that a turbine governor system is necessary to control amount of steam supply toward the turbine system. There are many kinds of trouble at this governor system, which is recognized one of the most sensitive systems in the power plant. Especially we have experienced the internal leakage of motorization oil of servo valve. In the study, we investigated the mechanism of an internal leakage such as erosion by foreign materials and corrosion by chemical reaction between chloric healed oil and motorization oil. A precautionary measures is also performed to help the field service engineers.

  • PDF

Study on the corrosion of A/C condenser in the ship (선박용 해수 열교환방식 A/C 응축기의 부식원인)

  • Baek, S.M.;Yang, J.H.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.283-284
    • /
    • 2006
  • The ship performs heat exchange using seawater to keep main engine and auxiliary machinery at optimum temperature. In heat exchanger, refrigerant located outside of copper tube is cooled by seawater flowing through inside of copper tube. On the other hand, seawater erosion and corrosion nay occasionally cause the corrosion of the copper tube in A/C(Air Conditioner) condenser. This corrosion of copper tube makes seawater and refrigerant mixed, seriously damaging A/C system. In this study, accordingly, the exact ive mechanism of the corrosion on the condenser entailing serious problems occasional is investigated through the electrochemical polarization experiments on the condenser's component materials. According to the experiments, the corrosive procedures on the copper tube was verified by the fact that passive film of the copper tube surface which is destroyed by the pressure of sucked seawater, is damaged by the corrosive ingredients in the seawater.

  • PDF

Study of the Cavitation Erosion Mechanism and Erosion Resistance on the Dispersion Strengthened Stainless Steel by Solid Particle Collapse (고체입자충격에 의한 분산강화 스테인리스강의 침식메커니즘 및 침식저항성 고찰)

  • Han, Byeong-Seon;Hong, Seong-Mo;Lee, Min-Gu;Park, Jin-Ju;Lee, Sang-Hun;Lee, Chang-Gyu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.29-29
    • /
    • 2007
  • 본 연구에서는 분산강화 스테인리스강을 이용하여 케비테이션 발생 시 고체입자충격에 의한 재료의 침식메커니즘 및 침식저항성을 고찰하고자 하였다. 케비테이션 시간에 따른 침식저항성 측정결과, 기존재료에 비해 분산강화된 시편의 무게손실량이 낮았으며 침식잠복기가 짧고 침식속도가 낮아 전반적으로 우수한 저항성을 보였다. 이것은 침식표면의 손상메커니즘 관찰을 통해 확인할 수 있었다.

  • PDF

Sediment Erosion and Transport Experiments in Laboratory using Artificial Rainfall Simulator

  • Regmi, Ram Krishna;Jung, Kwansue;Nakagawa, Hajime;Kang, Jaewon;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.13-27
    • /
    • 2014
  • Catchments soil erosion, one of the most serious problems in the mountainous environment of the world, consists of a complex phenomenon involving the detachment of individual soil particles from the soil mass and their transport, storage and overland flow of rainfall, and infiltration. Sediment size distribution during erosion processes appear to depend on many factors such as rainfall characteristics, vegetation cover, hydraulic flow, soil properties and slope. This study involved laboratory flume experiments carried out under simulated rainfall in a 3.0 m long ${\times}$ 0.8 m wide ${\times}$ 0.7 m deep flume, set at $17^{\circ}$ slope. Five experimental cases, consisting of twelve experiments using three different sediments with two different rainfall conditions, are reported. The experiments consisted of detailed observations of particle size distribution of the out-flow sediment. Sediment water mixture out-flow hydrograph and sediment mass out-flow rate over time, moisture profiles at different points within the soil domain, and seepage outflow were also reported. Moisture profiles, seepage outflow, and movement of overland flow were clearly found to be controlled by water retention function and hydraulic function of the soil. The difference of grain size distribution of original soil bed and the out-flow sediment was found to be insignificant in the cases of uniform sediment used experiments. However, in the cases of non-uniform sediment used experiments the outflow sediment was found to be coarser than the original soil domain. The results indicated that the sediment transport mechanism is the combination of particle segregation, suspension/saltation and rolling along the travel distance.

An Experimental Study on the Erosion of a Compacted Calcium Bentonite Block (압축된 칼슘벤토나이트 블록의 침식에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.341-348
    • /
    • 2005
  • Bentonite has been considered as a candidate buffer material in the underground repository for the disposal of high-level radioactive waste because of its low permeability, high sorption capacity, self sealing characteristics, and durability in nature. In this study, the potential for separation of bentonite particles caused by the groundwater erosion was studied experimentally for a Korean Ca-bentonite under the relevant repository conditions. Results showed that bentonite particles can be generated at the bentonite/granite interface and mobilized by the water flow although the intrusion of bentonite into fracture by swelling pressure was observed to be small. Different processes of mobilization of theses colloids from the compacted bentonite block have been identified in this study. The concentration of particles eluted in water was increased as the flow rate increased. Thus the result reveals that the erosion of the bentonite surface due to the groundwater flow together with intrusion processes is the main mechanism that can mobilize bentonite colloids in the fracture of the granite.

  • PDF

Analysis of Airborne LiDAR-Based Debris Flow Erosion and Deposit Model (항공LiDAR 자료를 이용한 토석류 침식 및 퇴적모델 분석)

  • Won, Sang Yeon;Kim, Gi Hong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.59-66
    • /
    • 2016
  • The 2011 debris flow in Mt. Umyeonsan in Seoul, South Korea caused significant damages to the surrounding urban area, unlike other similar incidents reported to have occurred in the past in the country's mountainous regions. Accordingly, landslides and debris flows cause damage in various surroundings, regardless of mountainous area and urban area, at a great speed and with enormous impact. Hence, many researchers attempted to forecast the extent of impact of debris flows to help minimize the damage. The most fundamental part in forecasting the impact extent of debris flow is to understand the debris flow behavior and sedimentation mechanism in complex three-dimensional topography. To understand sedimentation mechanism, in particular, it is necessary to calculate the amount of energy and erosion according to debris flow behavior. The previously developed debris flow models, however, are limited in their ability to calculate the erosion amount of debris flow. This study calculated the extent of damage caused by a massive debris flow that occurred in 2011 in Seoul's urban area adjacent to Mt. Umyeonsan by using DEM, created from aerial photography and airborne LiDAR data, for both before and after the damage; and developed and compared a debris flow behavioral analysis model that can assess the amount of erosion based on energy theory. In addition, simulations using the existing debris flow model (RWM, Debris 2D) and a comprehensive comparison of debris flow-stricken areas were performed in the same study area.

Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure (강우에 의한 사면붕괴에 관한 2차원 수치모의)

  • Regmi, Ram Krishna;Jung, Kwan-Sue;Lee, Gi-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF