DOI QR코드

DOI QR Code

Analysis of Airborne LiDAR-Based Debris Flow Erosion and Deposit Model

항공LiDAR 자료를 이용한 토석류 침식 및 퇴적모델 분석

  • Won, Sang Yeon (Department of Civil Engineering, Gangneung-Wonju National University) ;
  • Kim, Gi Hong (Department of Civil Engineering, Gangneung-Wonju National University)
  • 원상연 (강릉원주대학교 토목공학과) ;
  • 김기홍 (강릉원주대학교 토목공학과)
  • Received : 2016.07.04
  • Accepted : 2016.09.05
  • Published : 2016.09.30

Abstract

The 2011 debris flow in Mt. Umyeonsan in Seoul, South Korea caused significant damages to the surrounding urban area, unlike other similar incidents reported to have occurred in the past in the country's mountainous regions. Accordingly, landslides and debris flows cause damage in various surroundings, regardless of mountainous area and urban area, at a great speed and with enormous impact. Hence, many researchers attempted to forecast the extent of impact of debris flows to help minimize the damage. The most fundamental part in forecasting the impact extent of debris flow is to understand the debris flow behavior and sedimentation mechanism in complex three-dimensional topography. To understand sedimentation mechanism, in particular, it is necessary to calculate the amount of energy and erosion according to debris flow behavior. The previously developed debris flow models, however, are limited in their ability to calculate the erosion amount of debris flow. This study calculated the extent of damage caused by a massive debris flow that occurred in 2011 in Seoul's urban area adjacent to Mt. Umyeonsan by using DEM, created from aerial photography and airborne LiDAR data, for both before and after the damage; and developed and compared a debris flow behavioral analysis model that can assess the amount of erosion based on energy theory. In addition, simulations using the existing debris flow model (RWM, Debris 2D) and a comprehensive comparison of debris flow-stricken areas were performed in the same study area.

2011년 발생한 서울시 우면산의 토석류는 과거 산간지역 피해와는 달리 도심지역에서 큰 피해가 발생하였다. 따라서 산사태 및 토석류는 산악지역과 도심지역에 관계없이 다양한 지역에서 빠른 속도로 발생하여 엄청난 피해를 유발시키기 때문에 많은 연구자들은 토석류의 영향범위를 예측하고 피해를 최소화하기 위해 노력하고 있다. 토석류의 영향범위 예측을 위한 가장 핵심적인 부분은 복잡한 3차원 지형에서의 토석류 거동 및 퇴적 메커니즘을 이해하여야 한다. 그리고 퇴적 메커니즘을 이해하기 위해서는 토석류의 거동에 따른 에너지량과 침식량이 산정되어야 한다. 하지만 기존에 개발된 토석류 모델들은 토석류의 침식량을 산정하는데 한계가 있었다. 따라서 본 연구에서는 2011년 도심지의 대규모 토석류가 발생한 서울시 우면산 지역을 대상으로 항공사진, 항공 LiDAR 자료로부터 생성된 토석류 피해 전과 후의 DEM을 활용하여 토석류의 피해규모를 산정하였으며, 에너지 이론을 기반으로 하여 침식량을 산정할 수 있는 토석류 거동 해석 모델을 개발하여 비교하였다. 또한 동일지역에 대하여 기존의 토석류 모델(RWM, Debris 2D)도 함께 시뮬레이션 하여 종합적으로 토석류 지역을 비교 분석하였다.

Keywords

References

  1. Chun, K., Kim, M., Park, W. and Ezaki, T., 1997, Characteristics of channel bed and woody debris on mountainous stream, Journal of Korean Forest Society, Vol. 86, No. 1, pp. 69-79.
  2. Coussot, P. and Meunier, M., 1996, Recognition, classification and mechanical description of debris flows, Earth-Science Reviews, Vol. 40, pp. 209-227. https://doi.org/10.1016/0012-8252(95)00065-8
  3. Hirakawa, Y., Suwa, H., Fukuda, K. and Kobayashi, N., 2006, Application of PIV method for the measurement of surface velocity of debris flow, Journal of the Japan Society of Erosion Control Engineering, Vol. 59, No. 2, pp. 49-54.
  4. Imamura, R. and Sugita, M., 1980, Study on simulation of debris depositing based on a random walk model, Journal of the Japan Society of Erosion Control Engineering, Vol. 32, No. 3, pp. 17-26.
  5. Iverson, R. M., 1997, The Physics of debris flows, Review of Geophysics, Vol. 35, No. 3, pp. 245-296. https://doi.org/10.1029/97RG00426
  6. Jakob, M., 2005, A size classification for debris flows, Engineering Geology, Vol. 79, pp. 150-161.
  7. Jang, B. S., No, S.Y., Son, J. C. and Yu, B. O., 2007, Suggestions to reduce the slope disaster by analysing landslides in localized heavy rain, Journal of the Korea Institute for Structural Maintenance Inspection, Vol. 11, No. 4, pp. 3-11.
  8. Julien, P. Y. and Lan, Y., 1991, Rheology of hyperconcentrations, Journal of Hydraulic Engineering, Vol. 117, No. 3, pp. 346-353. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(346)
  9. Kim, G. H., Won, S. Y., Youn, J. H. and Song, Y. S., 2008, Hazard risk assessment for national roads in Gangneung city, Journal of the Korean Society for Geospatial Information Science, Vol. 16, No. 4, pp. 33-39.
  10. Kim, G. N., 2011, A basic study on the development of the guidelines on setting debris flow hazards, Research Institute for Gangwon, Korea, p. 170.
  11. Kim, G., Won, S. and Mo, S., 2014, Umyeon mountain debris flow movement analysis using random walk model, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 5, pp. 515-525. https://doi.org/10.7848/ksgpc.2014.32.5.515
  12. Ko, S. M., Lee, S. W., Yune, C. Y. and Kim, G., 2014, Topographic analysis of landslides in Umyeonsan, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 1, pp. 55-62. https://doi.org/10.7848/ksgpc.2014.32.1.55
  13. Korea forest service, 2015, The erosion control law, Korea forest service, http://www.law.go.kr/lsInfoP.do?lsiSeq=167957&efYd=20150804#0000
  14. Lee, C. W., Woo, C. S. and Youn, H. J., 2011, Analysis of debris flow hazard by the optimal parameters extraction of random walk model, Journal of Korean Forest Society, Vol. 100, No. 4, pp. 664-671.
  15. Liu, K. F. and Huang, M. C., 2006, Numerical simulation of debris flow with application on hazard area mapping, Computational Geoscience, Vol. 10, No. 2, pp. 221-240. https://doi.org/10.1007/s10596-005-9020-4
  16. Marchi, L. and D'Agostino, V., 2004, Estimation of debris-flow magnitude in the eastern Italian Alps, Earth Surface Processes and Landforms, Vol. 29, pp. 207-220. https://doi.org/10.1002/esp.1027
  17. O'Brien, J. S., Julien, P. Y. and Fullerton, W. T., 1993, Two dimensional water flood and mudflow simulation, Journal of Hydraulic Engineering, Vol. 119, No. 2, pp. 224-259.
  18. Pierson, T. C. and Costa, J. E., 1987, A theologic classification of subaerial sediment-water flows, Geological Society of America Reviews in Engineering Geology, Vol. 7, pp. 1-12. https://doi.org/10.1130/REG7-p1
  19. Satofuka, Y. and Mizuyama, T., 2005, Numerical simulation on a debris flow in a mountainous river with a Sabo dam, Journal of the Japan Society of Erosion Control Engineering, Vol. 58, No. 1, pp. 14-19.
  20. Suzuki, T., Hotta, N. and Miyamoto, K., 2003, Influence of riverbed roughness on debris flows, Journal of the Japan Society of Erosion Control Engineering, Vol. 56, No. 2, pp. 5-13.
  21. Tsai, M. P., Hsu, Y. C., Li, H. C., Shu, H. M. and Liu, K. F., 2011, Applications of simulation technique on debris flow hazard zone delineation: a case study in Daniao tribe, Eastern Taiwan, Natural Hazards and Earth System Sciences, Vol. 11, No. 11, pp. 3053-3062. https://doi.org/10.5194/nhess-11-3053-2011
  22. Wang, H., Liu, G., Xu, W. and Wang, G., 2005, GIS-based landslide hazard assessment : an overview, Progress in Physical Geography, Vol. 29 No. 4, pp. 548-567. https://doi.org/10.1191/0309133305pp462ra
  23. Won, S. and Kim, G., 2015, Simulation of debris flow deposit in Mt. Umyeon, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 6, pp. 507-516. https://doi.org/10.7848/ksgpc.2015.33.6.507
  24. Yang, I. T., Cheon, G. S. and Bak, J. H., 2006, The effect of landslide factor and determination of landslide vulnerable area Using GIS and AHP, Journal of the Korean Society for Geospatial Information System, Vol. 14, No. 1, pp. 3-12.

Cited by

  1. 재난정보 표출시스템 구축 및 공동활용을 위한 재난공간정보 공통기준 연구 vol.23, pp.4, 2016, https://doi.org/10.11108/kagis.2020.23.4.068