• 제목/요약/키워드: ergodic rate

검색결과 29건 처리시간 0.02초

Spectrum Sharing-Based Multi-Hop Decode-and-Forward Relay Networks under Interference Constraints: Performance Analysis and Relay Position Optimization

  • Bao, Vo Nguyen Quoc;Thanh, Tran Thien;Nguyen, Tuan Duc;Vu, Thanh Dinh
    • Journal of Communications and Networks
    • /
    • 제15권3호
    • /
    • pp.266-275
    • /
    • 2013
  • The exact closed-form expressions for outage probability and bit error rate of spectrum sharing-based multi-hop decode-and-forward (DF) relay networks in non-identical Rayleigh fading channels are derived. We also provide the approximate closed-form expression for the system ergodic capacity. Utilizing these tractable analytical formulas, we can study the impact of key network parameters on the performance of cognitive multi-hop relay networks under interference constraints. Using a linear network model, we derive an optimum relay position scheme by numerically solving an optimization problem of balancing average signal-to-noise ratio (SNR) of each hop. The numerical results show that the optimal scheme leads to SNR performance gains of more than 1 dB. All the analytical expressions are verified by Monte-Carlo simulations confirming the advantage of multihop DF relaying networks in cognitive environments.

A Spectral Efficient NOMA-based Two-Way Relaying Scheme for Wireless Networks with Two Relays

  • Li, Guosheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.365-382
    • /
    • 2021
  • This paper proposes a novel two-way relaying (TWR) approach for a two-relay wireless network based on non-orthogonal multiple access (NOMA), where two terminals exchange messages with a cellular base station (BS) via two intermediate relay stations (RSs). We propose a NOMA-based TWR approach with two relaying schemes, i.e., amplify-and-forward (AF) and decode-and-forward (DF), referred to as NOMA-AF and NOMA-DF. The sum-rate performance of our proposed NOMA-AF and NOMA-DF is analyzed. A closed-form sum-rate upper bound for the NOMA-AF is obtained, and the exact ergodic sum-rate of NOMA-DF is also derived. The asymptotic sum-rate of NOMA-AF and NOMA-DF is also analyzed. Simulation results show that the proposed scheme outperforms conventional orthogonal multiple access based transmission schemes. It is also shown that increasing the transmit power budget of the relays only cannot always improve the sum-rates.

다중 안테나 포트를 장착한 분산 안테나 시스템에서의 안테나 설계 방법 (Antenna Placement Designs for Distributed Antenna Systems with Multiple-Antenna Ports)

  • 이창희;박은성;이인규
    • 한국통신학회논문지
    • /
    • 제37A권10호
    • /
    • pp.865-875
    • /
    • 2012
  • 본 논문은 포트 당 일정 파워 제약을 전제한 상황에서, 다중 안테나를 장착한 분산 안테나 (distributed antenna: DA) 포트를 갖는 분산 안테나 시스템 (distributed antenna system: DAS)의 안테나 위치 설계 방법을 분석한다. 안테나 위치의 설계를 위해 복잡하게 셀 당 평균 ergodic sum rate를 최대화하는 대신, 본 논문에서는 단일 셀 상황에서는 signal-to-noise ratio (SNR) 기댓값의 lower bound에, 그리고 이중 셀 상황에서는 signal-to-leakage ratio (SLR) 기댓값의 lower bound에 각각 초점을 맞춘다. 단일 셀 상황의 경우, 기존의 반복적 알고리즘에 비해 SNR criterion의 최적화 문제는 닫힌 형태 (closed-form)의 솔루션을 제공한다. 또한, 이중 셀 상황에선 gradient ascent 방법을 이용한 알고리즘을 제안하여 SLR criterion의 최적화 솔루션을 도출한다.

HMM-UBM의 주 상태 정보를 이용한 음성 기반 문맥 독립 화자 검증 (Text Independent Speaker Verficiation Using Dominant State Information of HMM-UBM)

  • 손수원;노진상;김성수;이재원;고한석
    • 한국음향학회지
    • /
    • 제34권2호
    • /
    • pp.171-176
    • /
    • 2015
  • 본 논문에서는 Hidden Markov Model(HMM) - Universal Background Model(UBM)의 주 상태 정보 기반의 i-vector 추출 기술을 제안한다. Ergodic HMM이 UBM을 추정하는데 쓰였으며, 이를 통해 동일 화자 음성에도 다양하게 존재하는 특성을 HMM states로 분류할 수 있다. 제안한 방법을 이용하면 HMM의 state 개수에 따라 i-vector 들이 추출되는데, 주 상태 정보 방법을 통해 이들 중 하나를 선택한다. 제안한 방법을 검증하기 위해 National Institute of Standards and Technology(NIST) Speaker Recognition Evaluation(SRE) database를 이용하여 실험을 하였으며, Equal Error Rate(EER) 성능 수치에서 12 %의 성능 향상을 확인할 수 있었다.

Power allocation-Assisted secrecy analysis for NOMA enabled cooperative network under multiple eavesdroppers

  • Nayak, V. Narasimha;Gurrala, Kiran Kumar
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.758-768
    • /
    • 2021
  • In this work, the secrecy of a typical wireless cooperative dual-hop non-orthogonal multiple access (NOMA)-enabled decode-and-forward (DF) relay network is investigated with the impact of collaborative and non-collaborative eavesdropping. The system model consists of a source that broadcasts the multiplexed signal to two NOMA users via a DF relay, and information security against the eavesdropper nodes is provided by a helpful jammer. The performance metric is secrecy rate and ergodic secrecy capacity is approximated analytically. In addition, a differential evolution algorithm-based power allocation scheme is proposed to find the optimal power allocation factors for relay, jammer, and NOMA users by employing different jamming schemes. Furthermore, the secrecy rate analysis is validated at the NOMA users by adopting different jamming schemes such as without jamming (WJ) or conventional relaying, jamming (J), and with control jamming (CJ). Simulation results demonstrate the superiority of CJ over the J and WJ schemes. Finally, the proposed power allocation outperforms the fixed power allocation under all conditions considered in this work.

신호 포획현상을 가지는 알로하 시스템의 안정성 고찰 (A Stability Issue on Controlled ALOHA System with Capture Channel)

  • 곽경섭
    • 한국통신학회논문지
    • /
    • 제18권12호
    • /
    • pp.1855-1869
    • /
    • 1993
  • 기존의 알로하 시스템은 불안정한 시스템으로 알려져있다. 또한 포획현상을 가지는 알로하 시스템도 불안정하다는 것이 증명되었다. 본 논문에서는 신호, 포획현상을 가지는 알로하 시스템에 전송 제어 알고리즘을 적용하고, 새로운 Lyapunov 함수를 도입하여 다차원 바르코프 연쇄 모델의 안정성을 증명하였다. 부가적으로 시스템의 전송효율을 구하고, 또한 시뮬레이션을 통하여 패킷 전송지연을 분석하였다.

  • PDF

Before/After Precoding Massive MIMO Systems for Cloud Radio Access Networks

  • Park, Sangkyu;Chae, Chan-Byoung;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • 제15권4호
    • /
    • pp.398-406
    • /
    • 2013
  • In this paper, we investigate two types of in-phase and quadrature-phase (IQ) data transfer methods for cloud multiple-input multiple-output (MIMO) network operation. They are termed "after-precoding" and "before-precoding". We formulate a cloud massive MIMO operation problem that aims at selecting the best IQ data transfer method and transmission strategy (beamforming technique, the number of concurrently receiving users, the number of used antennas for transmission) to maximize the ergodic sum-rate under a limited capacity of the digital unit-radio unit link. Based on our proposed solution, the optimal numbers of users and antennas are simultaneously chosen. Numerical results confirm that the sum-rate gain is greater when adaptive "after/before-precoding" method is available than when only conventional "after-precoding" IQ-data transfer is available.

셀간 협력 통신 기반의 적응적 다중 사용자 다중 안테나 전송 기법 (Adaptive Multiuser MIMO Transmission in Wireless Systems with Cooperating Cells)

  • 이진희;고영채
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.102-107
    • /
    • 2011
  • In multicell wireless systems with insufficient frequency reuse, user transmission will suffer other-cell interference (OCI). Cell cooperation is an effective way to mitigate OCI and increase the system sum rate. An adaptive scheme for serving one user in each cell was proposed in [1]. In this paper, we generalize that scheme by serving two users in each cell with adaptive zeroforcing beamforming (ZF) strategies. Based on our derived statistics of the signal-to-noise plus interference ratios, we choose the scheme to maximize the total ergodic sum-rate based on user locations. Through the numerical examples, we show that the total system sum rate can be improved by selecting appropriate transmitting strategy adaptively. As a result, our proposed system can explore spatial multiplexing gain without additional power and thus improves total system sum rate significantly.

Sum Rate Approximation of Zero-Forcing Beamforming with Semi-Orthogonal User Selection

  • Yang, Jang-Hoon;Jang, Seung-Hun;Kim, Dong-Ku
    • Journal of Communications and Networks
    • /
    • 제12권3호
    • /
    • pp.222-230
    • /
    • 2010
  • In this paper, we present a closed-form approximation of the average sum rate of zero-forcing (ZF) beamforming (BF) with semi-orthogonal user selection (SUS). We first derive the survival probability associated with the SUS that absolute square of the channel correlation between two users is less than the orthogonalization level threshold (OLT).With this result, each distribution for the number of surviving users at each iteration of the SUS and the number of streams for transmission is calculated. Secondly, the received signal power of ZF-BF is represented as a function of the elements of the upper triangular matrix from QR decomposition of the channel matrix. Thirdly, we approximate the received signal power of ZF-BF with the SUS as the maximum of scaled chisquare random variables where the scaling factor is approximated as a function of both OLT and the number of users in the system. Putting all the above derivations and order statistics together, the approximated ergodic sum rate of ZF-BF with the SUS is shown in a closed form. The simulation results verify that the approximation tightly matches with the sample average for any OLT and even for a small number of users.

Characterization of Effective Capacity in Antenna Selection MIMO Systems

  • Lari, Mohammad;Mohammadi, Abbas;Abdipour, Abdolali;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.476-485
    • /
    • 2013
  • In this paper, the effective capacity of a multiple-input multiple-output (MIMO) system in two different cases with receive antenna selection (RAS) and transmit antenna selection (TAS) schemes is investigated. A closed-form solution for the maximum constant arrival rate of this network with statistical delay quality of service (QoS) constraint is extracted in the quasi-static fading channel. This study is conducted in two different cases.When channel state information (CSI) is not available at the MIMO transmitter, implementation of TAS is difficult. Therefore, RAS scheme is employed and one antenna with the maximum instantaneous signal to noise ratio is chosen at the receiver. On the other hand, when CSI is available at the transmitter, TAS scheme is executed. In this case, one antenna is selected at the transmitter. Moreover, an optimal power-control policy is applied to the selected antenna and the effective capacity of the MIMO system is derived. Finally, this optimal power adaptation and the effective capacity are investigated in two asymptotic cases with the loose and strict QoS requirements. In particular, we show that in the TAS scheme with the loose QoS restriction, the effective capacity converges to the ergodic capacity. Then, an exact closed-form solution is obtained for the ergodic capacity of the channel here.