• 제목/요약/키워드: equivalent torque

검색결과 231건 처리시간 0.03초

전압방정식에서 시변성이 고려된 파라미터에 의한 토크 리플 산정 (The Estimation of Torque Ripple According to Parameters Considered Time-varying in Voltage Equation)

  • 김규화;조규원;김규탁
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1047-1052
    • /
    • 2017
  • In this paper, the calculation torque using the d-q axis has advantage like faster execution time. However, the torque ripple can't be considered in the torque calculation using d-q axis equivalent circuit because the time-dependent component is removed. When d-q transformation was performed, it was founded that some parameters has some characteristics. These characteristics were considered for representing torque ripple. The calculation with d-q axis transformation and Finite Element Analysis(FEA) were performed, and the results were compared. As a result, it was validated that the calculated torque can be expressed with ripple.

반송용 SLIM의 추력제에에 의한 운전특성 (A Operating by the Direct Thrust Control of SLIM in Conveyor System)

  • 우정인;노태균;신동률;노인배
    • 조명전기설비학회논문지
    • /
    • 제12권3호
    • /
    • pp.59-66
    • /
    • 1998
  • In this paper, the thrust control of PWM Inverter-Fed SLIM(Single-sided Linear Induction Motor) is achieved with Space Vector control and PI control. The trembling of air gap length which is occurred between the primary winding core and the secondary structure of the SLIM must be minimized in order to get quick response characteristics. First, the equivalent circuits and voltage equations of SLIM are shown on th suitable d-q axis which analyze characteristics of the thrust and the normal force. Also, modeling and analysis of the equivalent circuits transferred d-q axis are able to make robust transient torque from the current regulation in the equivalent circuit. These results exemplified the direct drive of SLIM with the reference speed and torque were verified by experiments.

  • PDF

자기등가회로 기법을 사용한 2상 E-core SRM의 해석에 관한 연구 (Analysis of Two-phase E-core Switched Reluctance Machines Using Magnetic Equivalent Circuit Technique)

  • 이치우
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.1986-1989
    • /
    • 2010
  • The modification of magnetic structures for an E-core switched reluctance machine (SRM) comprising two segmented stator cores or a monolithic stator core is presented for ease of assembly, good manufacturability, mechanical robustness, and electromagnetic performance improvement. The E-core stator has four small poles with phase windings and two or four large poles (hereafter referred to as common poles), in between. The common poles are shared by both phases for positive torque generation during the entire operation. The E-core SRMs are compared to a conventional two-phase SRM. The comparison includes cost savings, torque, copper and core losses, and efficiency in order to validate the distinct features of the E-core SRMs. Magnetic equivalent circuit (MEC) technique is employed for proving the benefits of the E-core common-pole structure.

정상상태시 유도전동기의 등가회로 및 정수산정에 관한 연구 (A Study on the Equivalent Circuit and Parameter Estimation of I.M for Steady state.)

  • 백수현;김용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.80-82
    • /
    • 1988
  • This paper proposed a new equivalent circuit and parameter estimation for I.M, which is different from T type and L type equivalent circuits. By using this circuit, we can analyze the torque of I.M, such as seperately exited D.C Motor, further more, we think that this equivalent circuit is effective to the vector control system for I.M.

  • PDF

토크 컨버터의 1차원 성능 모델을 이용한 유동 각도 보정 계수에 관한 연구 (A Study on the Correction Factor of Flow Angel by using the One Dimentional Performance Model of Torque Converter)

  • 임원식
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.506-517
    • /
    • 2000
  • One dimensional performance model has been used for the design of torque converter. The model is based on the concept of constant mean flow path and constant flow angle. These constant-assumed para meters make the design procedure to be simple. In practice, some parameters are usually replaced with geometric raw data and, the constant experiential correction factors have been used to minimize the design error. These factors have no definite physical meaning and so they cannot be applied confidently to the other design condition. In this study, the detail dynamic model of torque converter is presented to establish the theoretical background of correction factors. To verify the validity of theoretical model, steady state performance test was carried out on the several input speed. The oil temperature effect on the performance is analysed and adjusted. The constant equivalent flow angles are determined at a part of performance region by comparing the theoretical model and the test data. The sensitivity of correction factors to the input speeds are studied and the change of torus flow is presented.

Direct Torque Control System of a Reluctance Synchronous Motor Using a Neural Network

  • Kim Min-Huei
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.36-44
    • /
    • 2005
  • This paper presents an implementation of high performance control of a reluctance synchronous motor (RSM) using a neural network with a direct torque control. The equivalent circuit in a RSM, which considers iron losses, is theoretically analyzed. Also, the optimal current ratio between torque current and exiting current is analytically derived. In the case of a RSM, unlike an induction motor, torque dynamics can only be maintained by controlling the flux level because torque is directly proportional to the stator current. The neural network is used to efficiently drive the RSM. The TMS320C3l is employed as a control driver to implement complex control algorithms. The experimental results are presented to validate the applicability of the proposed method. The developed control system shows high efficiency and good dynamic response features for a 1.0 [kW] RSM having a 2.57 ratio of d/q.

유압 모터용 에피트로코이드 제로터의 응력해석 (Stress Analysis of Epitrochoidal Gerotor for Hydraulic Motor)

  • 김두인;최동훈;안효석
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.963-971
    • /
    • 2000
  • Gerotor is a planar mechanism consisting of a rotor and lobes which form a closed space, namely a chamber. As active contact points between a rotor and lobes are subjected to very high contact stresses, wear in one or both of the rotor and lobe cannot be avoided. Therefore, in the design of Gerotor used in hydraulic motors a compromise between high torque output and contact stress is of great importance and a thorough analysis of design parameters should be conducted to achieve this compromise. In this study, a contact point is modelled as a linear spring in consideration of equivalent curvature to analyze the contact stress. As the contact stress calculation in this problem is a statically indeterminate type, a numerical iterative scheme has been adopted to obtain the solution. To fully understand the influence of design parameters on the contact stress, the relationship between pressure force, equivalent curvature, contact force and contact stress are analyzed. It is shown that the equivalent curvature of the contact point is a dominant factor that affects the maximum contact stress.

마그네틱 커플링을 장착한 축계의 동적해석(I) (Dynamic analysis of spindle system with magnetic coupling(1))

  • Kim, S.K.;Lee, S.J.;Lee, J.M.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.99-105
    • /
    • 1994
  • In this study, the transverse and the torsional vibration analyses of a precision dynamic drive system with the magnetic coupling are accomplished. The force of the magnetic coupling is regarded as an equivalent transverse stiffness, which has a nonlinearity as a function of the gap and the eccentricity between a driver and a follower. Such an equivalent stiffness is calculated by and determined by the physical law and the calculated equivalent stiffness is modelled as the truss element. The form of the torque function transmitted through the magnetic coupling is a sinusoidal and such an equivalent angular stiffness, which represents the torque between a driver and a follower, is modelled as a nonlinear spring. The main spindle connected to a follower is assumed to a rigid body. And then finally we have the nonlinear partial differential equation with respect to the angular displacements. Through the procedure mentioned above, we accomplish the results of the torsional vibration analysis in a spindle system with the magnetic coupling.

  • PDF

다목적 농작업 기계 변속기 부변속 안전율 분석 (Safety Factor Analysis of Range-Shift on Multi-Purpose Agricultural Implement Machinery)

  • 문석표;백승민;이남규;박성운;최영수;최창현;김용주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.141-151
    • /
    • 2020
  • The aim of this study was to analyze the safety factor of range-shift gear pairs on multi-purpose agricultural implement machinery for an optimal design of a transmission system. Gear-strengths such as bending and contact stress and safety factors were analyzed under three load conditions: an equivalent engine torque at plow tillage, a rated engine torque, and the maximum engine torque. Root and contact safety factor were calculated to be 3.88, 5.14, 2.24, 2.11, 2.21, 0.99 and 0.78, 0.94, 0.65, 0.68, 0.84, 0.85, respectively, under equivalent engine torque condition at the plow tillage. The root and contact safety factor were calculated to be 1.91, 2.53, 1.10, 1.04, 1.07, 0.48 and 0.55, 0.66, 0.46, 0.48, 0.59, 0.59, respectively, under rated engine torque condition. The root and contact safety factor were calculated to be 1.60, 2.11, 0.92, 0.87, 0.90, 0.40 and 0.51, 0.61, 0.42, 0.44, 0.54, 0.54, respectively, under the maximum engine torque condition. The multi-purpose agricultural implement machinery could be conducted under plow tillage operation. However, gear specifications for tooth surface need modification because the gear surface would be broken at all driving conditions as safety factors are lower than 1.

자동변속기의 과도특성 분석을 위한 토크 컨버터의 변동 파라미터 성능 모델 개발 (Development of the Variable Parametric Performance Model of Torque Converter for the Analysis of the Transient Characteristics of Automatic Transmission)

  • 임원식;이진원
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.244-254
    • /
    • 2002
  • To enhance the acceleration performance and fuel consumption rate of a vehicle, the torque converter is modified or newly-developed with reliable analysis model. Up to recently, the one dimensional performance model has been used for the analysis and design of torque converter. The model is described with constant parameters based on the concept of mean flow path. When it is used in practice, some experiential correction factors are needed to minimize tole estimated error. These factors have poor physical meaning and cannot be applied confidently to the other specification of torque converter. In this study, the detail dynamic model of torque converter is presented to establish the physical meaning of correction factors. To verify the validity of model, performance test was carried out with various input speed and oil temperature. The effect of oil temperature on the performance is analysed, and it is applied to the dynamic model. And, to obtain the internal flow pattern of torque converter, CFD(Computational Fluid Dyanmics) analysis is carried out on three-dimensional turbulent flow. Correction factors are determined from the internal flow pattern, and their variation is presented with the speed ratio of torque converter. Finally, the sensitivity of correction factors to the speed ratio is studied for the case of changing capacity factor with maintaining torque ratio.