• 제목/요약/키워드: equivalent static seismic load

검색결과 35건 처리시간 0.02초

일차 냉각계통 스트레이너에 대한 내진 건전성 평가 (Seismic Evaluation for Strainer in the Primary Cooling System)

  • 정철섭
    • 한국전산구조공학회논문집
    • /
    • 제13권3호
    • /
    • pp.295-304
    • /
    • 2000
  • 본 연구의 목적은 지진하중에 대한 응력 해석을 수행하여 ASME, Class 3 설계요건에 따라 스트레이너의 구조건진성을 평가하는 것이다. 스트레이너에 대한 설계요건이 ASME 코드 내에 명백하게 규정되어 있지 않기 때문에 본체는 밸브 설계요건인 ND-3500을 적용하고, 양쪽 플랜지 연결부는 배관 설계요건 중 ND-3658.3을 적용하였으며, 하단의 덮개 플랜지는 Appendix XI에 따라 설계 및 해석을 수행하였다. 본 연구에서는 T형 스트레이너를 쉘로 모델링하여 유한요소법을 사용하여 지진하중에 의해 스트레이너가 응답하는 모드 형상 및 고유진동수를 계산하여 충분히 강건한 구조물임을 입증한 후 정적 해석을 수행하여 주관과 분기 관이 접합하는 연결부위와 같은 위험단면에서의 막응력과 굽힘 응력을 구하였다. 각 하중조합에 대해 코드에서 규정하고있는 허용 값과 비교한 결과 스트레이너는 지진하중이 작용하는 경우 구조적 건전성을 유지하고 있음을 확인하였다. 아울러 인접 배관을 연결해주는 플랜지 연결부의 응력을 규정에 따라 구한 후 설계요건에 의한 허용 값과 비교하여 건전성을 만족함을 알 수 있었다.

  • PDF

Modeling of non-seismically detailed columns subjected to reversed cyclic loadings

  • Tran, Cao Thanh Ngoc
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.163-178
    • /
    • 2012
  • A strut-and-tie model is introduced in this paper to predict the ultimate shear strength of non-seismically detailed columns. The validity and applicability of the proposed strut-and-tie model are evaluated by comparison with available experimental data. The model was developed based on visible crack patterns observed on the test specimens. The concrete contribution is integrated into the strut-and-tie model through a concept of equivalent transverse reinforcement. To further validate the model a full-scale non-seismically detailed reinforced concrete column was tested to investigate its seismic behavior. The specimen was tested under the combination of a constant axial load, $0.30f_c{^{\prime}}A_g$ and quasi-static cyclic loadings simulating earthquake actions. Quasi-static cyclic loadings simulating earthquake actions were applied to the specimen until it could not sustain the applied axial load. The analytical results reveal that the strut-and-tie method is capable of modeling to a satisfactory accuracy the ultimate shear strength of non-seismically detailed columns subjected to reserved cyclic loadings.

건축 비구조재의 내진설계요소 및 내진설계하중에 관한 고찰 (Investigation on Seismic Design Component and Load for Nonstructural Element)

  • 최인섭;이주희;손정훈;김준희
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.117-124
    • /
    • 2019
  • Nonstructural elements are installed according to the function of a building, and refer to the elements other than a structural system that resists external loads. Although the nonstructural elements had the largest part of seismic loss of buildings, seismic design of buildings mainly focuses on structural system and the seismic design of nonstructural elements are rarely conducted. In this study, the seismic design provisions of nonstructural elements presented in Uniform Building Code (UBC) and International Building Code (IBC) were investigated in order to analyze the seismic design considerations of nonstructural elements presented in Korean Building Code (KBC). The results showed that the equivalent static load applied to seismic design of nonstructural elements was revised to take into consideration a total of five items such as effective ground acceleration, vertical amplification factor, response amplification factor, response modification factor, importance factor.

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

Comparison between the Egyptian and international codes based on seismic response of mid- to high-rise moment resisting framed buildings

  • Ahmed Ibrahim;Ibrahim El-Araby;Ahmed I. Saleh;Mohammed Shaaban
    • Structural Engineering and Mechanics
    • /
    • 제87권4호
    • /
    • pp.347-361
    • /
    • 2023
  • This research aims to assess the behavior of reinforced concrete (RC) residential buildings when moment-resisting frames (MRFs) are used as the lateral resisting system. This investigation was conducted using MIDAS Gen v.19.0. Buildings with various plan footprints (Square, Rectangular, Circular, Triangular, and Plus-Shaped), and different heights (15 m, 30 m, 45 m, and 60 m) are investigated. The defined load cases, the equivalent static lateral load pattern, and the response spectrum function were defined as stated by the American Standard (ASCE 7-16), the 1997 Uniform Building Code (UBC97), the Egyptian Code for Loads (ECP-201), and the European Standard (EC8). Extensive comparisons of the results obtained by the different codes (including the story displacement, the story drift, and the base shear) were undertaken; to assess the response of moment-resisting multi-story framed buildings under lateral loads. The results revealed that, for all study cases under consideration, both ECP-201 and EC8 gave smaller base shear, displacement, and drift by one third to one fourth, around one fourth, around one fifth, respectively for both the ELF and RSA methods if compared to ASCE 7-16 and UBC97.

Mechanics feasibility of using CFRP cables in super long-span cable-stayed bridges

  • Zhang, Xin-Jun
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.567-579
    • /
    • 2008
  • To gain understanding of the applicability of CFRP cables in super long-span cable-stayed bridges, by taking a 1400 m cable-stayed bridge as example, mechanics performance including the static behavior under service load, dynamic behavior, wind stability and seismic behavior of the bridge using either steel or CFRP cables are investigated numerically and compared. The results show that viewed from the aspect of mechanics performance, the use of CFRP cables in super long-span cable-stayed bridges is feasible, and the cross-sectional areas of CFRP cables should be determined by the principle of equivalent axial stiffness.

면진건축물의 동적특성을 고려한 층지진하중 분배식의 제안 (Vertical Distribution of Seismic Load Considering Dynamic Characteristics of Based Isolated Building Structures)

  • 이동근;홍장미
    • 한국지진공학회논문집
    • /
    • 제3권4호
    • /
    • pp.11-22
    • /
    • 1999
  • 본 논문에서는 일반적으로 사용되고 있느 면진건축물의 내진설계기준에 대한 타당성을 검증하고 새로운 층지진하중 산정식을 제안하였다 UBC-91의 층지진하중 산정식은 충분한 안전성을 가지지 못하였으므로 94년에 개정이 되었다 그러나 개정된 산정식도 고정기초건축물과 유사한 층지진하중 산정식을 사용하였으므로 비경제성이 문제점으로 지적되고 있다 그러므로 제안된 식에서는 2자유도계 면진건축물과 고정기초건축물의 모드형상을 이용하여 안전성, 경제성 및 적용성을 만족시키도록 하였다. 제안된 층지진하중 산정식의 정확성 및 적용성을 검증하기 위하여 코멘트저항 골조형식과 전단변 구조형식의 구조물의 예제해석을 수행하였으며 동적해석의 경우와 근접한 결과를 얻었다.

  • PDF

역량스펙트럼 방법과 수정변위계수법을 이용한 다경간 교량의 내진성능 평가 (Seismic Performance Evaluation of Multi-Span Bridges using CSM and modified DCM)

  • 남왕현;송종걸;정영화
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.119-126
    • /
    • 2006
  • Capacity spectrum method(CSM) of ATC-40(1996) and displacement coefficient method(DCM)of FEMA-273(1997) are applied to evaluate the seismic performance of bridges. In this study, equivalent response is obtained from nonlinear static analysis for the 3spans continues bridge and nonlinear maximum displacement response is calculated using CSM and DCM. Nonlinear maximum displacement response of DCM is larger than this of CSM. It is method that DCM can evaluate target displacement and ductility of structural to be easy and simple, but tend to overestimate the maximum displacement response. Therefore, this method is mainly used at preparation design level to evaluate the structural response. It is not desirable to evaluate the seismic performance using DCM.

  • PDF

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.