• 제목/요약/키워드: equivalent linearization

검색결과 76건 처리시간 0.026초

Equivalent period and damping of SDOF systems for spectral response of the Japanese highway bridges code

  • Sanchez-Flores, Fernando;Igarashi, Akira
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.377-396
    • /
    • 2011
  • In seismic design and structural assessment using the displacement-based approach, real structures are simplified into equivalent single-degree-of-freedom systems with equivalent properties, namely period and damping. In this work, equations for the optimal pair of equivalent properties are derived using statistical procedures on equivalent linearization and defined in terms of the ductility ratio and initial period of vibration. The modified Clough hysteretic model and 30 artificial accelerograms, compatible with the acceleration spectra for firm and soft soils, defined by the Japanese Design Specifications for Highway Bridges are used in the analysis. The results obtained with the proposed equations are verified and their limitations are discussed.

등가선형화방법을 이용한 선체의 불규칙 횡동요 운동의 통계적 해석 (Statistical Analysis of Random Ship Rolling Using Equivalent Linearization Method)

  • 김동수;이원경
    • 대한조선학회논문집
    • /
    • 제30권4호
    • /
    • pp.39-45
    • /
    • 1993
  • 불규칙 해상에서의 선체의 횡동요운동을 해석하기 위하여 등가선형화방법을 사용 하였다. 일자 유도 선형 횡동요운동 모델에다가 2차의 비선형 감쇠항과 3차 및 5차의 비선형 복원 모멘트를 추가 하였으며 불규칙 기진 모멘트는 가우스 백색잡음으로 가정 하였다. 등가선형화 방법을 사용하여 예측한 응답의 통계적 특성을Simulation 결과와 비교 하였다.

  • PDF

Seismic Capacity Required for the Safety Limit Design of High-rise RC Buildings under Long-period Ground Motions in Osaka, JAPAN and its Estimation Based on the Equivalent Linearization Method

  • Sanada, Yasushi;Yoshida, Hiroki;Awano, Masayuki
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.315-323
    • /
    • 2020
  • In June 2016, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) in Japan delivered countermeasures against long-period ground motions caused by strong earthquakes along the Nankai trough. However, the countermeasures do not cover high-rise buildings equal to or shorter than 60 m in height, which do not require earthquake response analyses in the seismic design. Hence, in the present study, earthquake response analyses for such high-rise reinforced concrete (RC) buildings were performed under artificial ground motions assumed in the OS1 and OS2 regions to determine the base shear coefficients that satisfy a given safety demand. Furthermore, the results from the earthquake response analyses were estimated by the authors' proposed method based on the equivalent linearization method, showing good agreement and inspiring suggestions for more accurate and simplified estimations.

선형화 기법을 이용한 MR 감쇠기 성능평가 (Performance Evaluation of MR Damper using Equivalent Linearization Technique)

  • 이상현;민경원;이명규
    • 한국지진공학회논문집
    • /
    • 제9권2호통권42호
    • /
    • pp.1-6
    • /
    • 2005
  • 본 논문의 목적은 구조물의 지진응답제어를 위해 사용되는 MR 감쇠기의 성능을 선형화기법을 이용하여 등가의 선형 점성으로 표현하고, 이를 MR감쇠기가 설치된 축소건물에 대한 시스템식별 실험을 통해 얻은 결과와 비교하여, MR 감쇠기의 성능평가에 대한 선형화 기법의 타당성을 검증하는 것이다. 먼저, MR 감쇠기의 이력모델로 많이 사용되는 모델 중, 수학적 표현이 간단한 Bingham 모델에 등가선형화 기법을 적용하여 등가의 점성을 구하였다. 그리고, 진동대 가진실험을 통해 얻어진 MR감쇠기가 설치된 3층 소형구조물의 전달함수로부터 모드정보를 추출하고 이를 사용하여 구조물의 점성행렬을 구하였다. 선형화기법을 통해 Bingham 모델을 사용하여 예측된 점성과 실험을 통해 얻어진 MR감쇠기에 의해 증가된 점성은 5% 오차범위 이내로 일치된 결과를 보여준다.

Damping updating of a building structure installed with an MR damper

  • Woo, Sung-Sik;Lee, Sang-Hyun
    • Smart Structures and Systems
    • /
    • 제12권6호
    • /
    • pp.695-705
    • /
    • 2013
  • The purpose of this paper is to identify through experiments the finite element (FE) model of a building structure using a magnetorheological (MR) fluid damper. The FE model based system identification (FEBSI) technique evaluates the control performance of an MR damper that has nonlinear characteristics as equivalent linear properties such as mass, stiffness, and damping. The Bingham and Bouc-Wen models were used for modeling the MR damper and the equivalent damping increased by the MR damper was predicted by applying an equivalent linearization technique. Experimental results indicate that the predicted equivalent damping matches well with the experimentally obtained damping.

랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석 (Dynamic Analysis of Guyed Tower Subjected to Random Waves)

  • 유정선;윤정봉
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

부력 및 모멘트 제어를 이용한 수중글라이더의 안정화: 피드백 선형화 접근법 (Stabilization of Underwater Glider by Buoyancy and Moment Control: Feedback Linearization Approach)

  • 지성철;이호재;김문환;문지현
    • 한국해양공학회지
    • /
    • 제28권6호
    • /
    • pp.546-551
    • /
    • 2014
  • This paper addresses a feedback linearization control problem for the nonlinear dynamics of an underwater glider system. We consider the buoyancy and moment as control inputs, which come from the mass variation and elevator control, respectively. Moment-to-force coupling increases the nonlinearities, which make the controller design difficult. By using a feedback linearization technique, we convert the nonlinear underwater glider to an equivalent linear model and design a linear controller. The controller for the equivalent converted linear system is designed using sufficient conditions in terms of linear matrix inequalities. Then, the control input of the nonlinear model of an underwater glider is formulated from the linear control input. An experimental examination is implemented to verify the effectiveness of the proposed technique.

선형화 기법에 기반한 MR 감쇠기가 설치된 건물의 동적모델 예측과 시스템식별 실험결과의 비교연구 (Comparative Studies between Prediction for a Building Structure with MR Damper using Linearization Technique and Experimental System Identification)

  • 이상현;민경원;이명규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.323-330
    • /
    • 2004
  • The purpose of this paper is to experimentally identify the finite element (FE) model of a building structure with magnetorheological (MR) fluid damper. Using FE model based system identification (FEBSI) technique, The model of MR damper having nonlinear characteristics is expressed with equivalent linear properties such as mass, stiffness, and damping. Bingham model is used for MR damper modeling. The equivalent stiffness and damping matrices of MR damper are predicted by applying an equivalent linearization technique, and those values are compared with the experimentally obtained ones.

  • PDF

공압 제진 시스템의 해석과 설계: I. 모델링과 전달율 계산 알고리즘 (Analysis and Design of a Pneumatic Vibration Isolation System: Part I. Modeling and Algorithm for Transmissibility Calculation)

  • 문준희;박희재
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.127-136
    • /
    • 2004
  • This paper is the first of two companion papers concerning the analysis and design of a pneumatic vibration isolation system. The design optimization of the pneumatic vibration isolation system is required for the reduction of cost, endeavor and time, and it needs modeling and calculation algorithm. The nonlinear models are devised from the fluid mechanical expression for components of the system and the calculation algorithm is derived from the mathematical relationship between the models. It is shown that the orifice makes the nonlinear property of the transmissibility curve that the resonant frequency changes by the amplitude of excited vibration. Linearization of the nonlinear models is tried to reduce elapsed time and truncation error accumulation and to enable the transmissibility calculation of the system with multi damping chambers. The equivalent mechanical models generated by linearization clarify the function of each component of the system and lead to the linearized transfer function that can give forth to the transmissibility exactly close to that of nonlinear models. The modified successive under-relaxation method is developed to calculate the linearized transfer function.