• Title/Summary/Keyword: equivalent linear method

Search Result 507, Processing Time 0.028 seconds

Time-domain Finite Element Formulation for Linear Viscoelastic Analysis Based on a Hereditary Type Constitutive Law (유전적분형 물성방정식에 근거한 선형 점탄성문제의 시간영역 유한요소해석)

  • 심우진;이호섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1429-1437
    • /
    • 1992
  • A new finite element formulation based on the relaxation type hereditary integral is presented for a time-domain analysis of isotropic, linear viscoelastic problems. The semi-discrete variational approximation and elastic-viscoelastic correspondence principle are used in the theoretical development of the proposed method. In a time-stepping procedure of final, linear algebraic system equations, only a small additional computation for past history is required since the equivalent stiffness matrix is constant. The viscoelasticity matrices are derived and the stress computation algorithm is given in matrix form. The effect of time increment and Gauss point numbers on the numerical accuracy is examined. Two dimensional numerical examples of plane strain and plane stress are solved and compared with the analytical solutions to demonstrate the versatility and accuracy of the present method.

An Investigation on Application of Experimental Design and Linear Regression Technique to Predict Pitting Potential of Stainless Steel

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.52-61
    • /
    • 2021
  • This study using experimental design and linear regression technique was implemented in order to predict the pitting potential of stainless steel in marine environments, with the target materials being AL-6XN and STS 316L. The various variables (inputs) which affect stainless steel's pitting potential included the pitting resistance equivalent number (PRNE), temperature, pH, Cl- concentration, sulfate levels, and nitrate levels. Among them, significant factors affecting pitting potential were chosen through an experimental design method (screening design, full factor design, analysis of variance). The potentiodynamic polarization test was performed based on the experimental design, including significant factor levels. From these testing methods, a total 32 polarization curves were obtained, which were used as training data for the linear regression model. As a result of the model's validation, it showed an acceptable prediction performance, which was statistically significant within the 95% confidence level. The linear regression model based on the full factorial design and ANOVA also showed a high confidence level in the prediction of pitting potential. This study confirmed the possibility to predict the pitting potential of stainless steel according to various variables used with experimental linear regression design.

Automatic learning of fuzzy rules for the equivalent 2 layered hierarchical fuzzy system (동등 변환 2계층 퍼지 시스템의 규칙 자동 학습)

  • Joo, Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.598-603
    • /
    • 2007
  • To solve the rule explosion problem in multi-input fuzzy system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system has been reported, where at the 1st layer, linearly independent fuzzy rule vectors generated from the given fuzzy system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used. In this paper, the steapest descent algorithm is presented to learn the fuzzy rule vectors and related coefficients for the equivalent 2 layered hierarchical structure. By simulation of learning of ball and beam control system, the feasibility of proposed learning scheme is shown.

Applied 2D equivalent linear program to analyze seismic ground motion: Real case study and parametric investigations

  • Soltani, Navid;Bagheripour, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Seismic ground response evaluation is one of the main issues in geotechnical earthquake engineering. These analyses are subsequently divided into one-, two- and three-dimensional methods, and each of which can perform in time or frequency domain. In this study, a novel approach is proposed to assess the seismic site response using two-dimensional transfer functions in frequency domain analysis. Using the proposed formulation, a program is written in MATLAB environment and then promoted utilizing the equivalent linear approach. The accuracy of the written program is evaluated by comparing the obtained results with those of actual recorded data in the Gilroy region during Loma Prieta (1989) and Coyote Lake (1979) earthquakes. In order to precise comparison, acceleration time histories, Fourier amplitude spectra and acceleration response spectra diagrams of calculated and recorded data are presented. The proposed 2D transfer function diagrams are also obtained using mentioned earthquakes which show the amount of amplification or attenuation of the input motion at different frequencies while passing through the soil layer. The results of the proposed method confirm its accuracy and efficiency to evaluate ground motion during earthquakes using two-dimensional model. Then, studies on irregular topographies are carried out, and diagrams of amplification factors are shown.

A new non-iterative procedure to estimate seismic demands of structures

  • Mechaala, Abdelmounaim;Chikh, Benazouz
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.585-595
    • /
    • 2022
  • Using the nonlinear static procedures has become very common in seismic codes to achieve the nonlinear response of the structure during an earthquake. The capacity spectrum method (CSM) adopted in ATC-40 is considered as one of the most known and useful procedures. For this procedure the seismic demand can be approximated from the maximum deformation of an equivalent linear elastic Single-Degree-of-Freedom system (SDOF) that has an equivalent damping ratio and period by using an iterative procedure. Data from the results of this procedure are plotted in acceleration- displacement response spectrum (ADRS) format. Different improvements have been made in order to have more accurate results compared to the Non Linear Time History Analysis (NL-THA). A new procedure is presented in this paper where the iteration process shall not be required. This will be done by estimation the ductility demand response spectrum (DDRS) and the corresponding effective damping of the bilinear system based on a new parameter of control, called normalized yield strength coefficient (η), while retaining the attraction of graphical implementation of the improved procedure of the FEMA-440. The proposed procedure accuracy should be verified with the NL-THA analysis results as a first implementation. The comparison shows that the new procedure provided a good estimation of the nonlinear response of the structure compared with those obtained when using the NL-THA analysis.

A Study on the Estimation of Autogenous Shrinkage of High Strength Mortar incorporating Mineral Admixture by Equivalent Age Method (등가재령 방법에 의한 혼화재 치환 고강도 시멘트 모르타르의 자기수축 해석에 관한 연구)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2014
  • The objective of this study is to investigate an effect of curing temperature on autogenous shrinkage of high strength cement mortar with 0.15 of W/B incorporating fly ash and silica fume in terms of equivalent age. The contents of fly ash and silica fume are varied from 10% to 30%. Non linear regression model applying equivalent age was used to estimate the autogenous shrinkage evolution. To obtain apparent activation energy($E_a$), setting time method by Pinto and existing method were calculated and compared respectively. Test results showed that use of silica fume increased autogenous shrinkage while use of fly ash decreased it. It was also found that poor agreements were obtained when $E_a$ by setting time was applied. But, application of existing $E_a$ resulted in a good agreement between calculated autogenous shrinkage and measured one.

A new method for infill equivalent strut width

  • Tabeshpour, Mohammad Reza;Arasteh, Arash Mahdipour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.257-268
    • /
    • 2019
  • Infills are as important members in structural design as beams, columns and braces. They have significant effect on structural behavior. Because of lots of variables in infills like material non-linear behavior, the interaction between frames and infill, etc., the infills performance during an earthquake is complicated, so have led designers do not consider the effect of infills in designing the structure. However, the experimental studies revealed that the infills have the remarkable effect on structure behavior. As if these effects ignored, it might occur soft-story phenomena, torsion or short-column effects on the structures. One simple and appropriate method for considering the infills effects in analyzing, is replacing the infills with diagonal compression strut with the same performance of real infill, instead of designing the whole infill. Because of too many uncertainties, codes and researchers gave many expressions that were not as the same as the others. The major intent of this paper is calculation the width of this diagonal strut, which has the most characteristics of infill. This paper by comprehensive on different parameters like the modulus of young or moment of inertia of columns presents a new formula for achieving the equivalent strut width. In fact, this new formula is extracted from about 60 FEM analyses models. It can be said that this formula is very efficient and accurate in estimating the equivalent strut width, considering the large number of effective parameters relative to similar relationships provided by other researchers. In most cases, the results are so close to the values obtained by the FEM. In this formula, the effect of out of plane buckling is neglected and this formula is used just in steel structures. Also, the thickness of infill panel, and the lateral force applied to frame are constant. In addition, this new formula is just for modeling the lateral stiffness. Obtaining the nearest response in analyzing is important to the designers, so this new formula can help them to reach more accurate response among a lot of experimental equations proposed by researchers.

Structural Optimization Using Equivalent Static Loads and Substructure Synthesis Method (등가정하중법과 부분구조합성법을 이용한 구조최적설계)

  • Choi, Wook Han;Na, Yoo Sang;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.823-830
    • /
    • 2015
  • Structural optimization pursues improved performance of structures. Nowadays, structural optimization is applied to the design of huge and complex structures such as an airplane. As the number of the finite elements is increased, the analysis solution becomes more accurate. However, the design cost using the finite element model is significantly increased. The component mode synthesis method that is using the substructure synthesis method is frequently employed in order to keep the accuracy and reduce the cost. A new design method for structural optimization is proposed to reduce the design cost and to consider the dynamic effect of the structure. The proposed method reduces the design cost by applying the equivalent static loads on the design domain. An example of linear dynamic response optimization is solved and the efficiency of the proposed method is demonstrated.

Characteristics Analysis of Tubular Linear Induction Motor Specially-designed for Elevator (엘리베이터용 TLIM의 특성해석)

  • Im, Dal-Ho;Kim, Young-Joong;Yoon, Sang-Baeck;Hwang, Sang-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.612-614
    • /
    • 1992
  • This paper presents the analysis method of TLIM, for the purpose of developing linear induction motor drive for elevators. The transfer matrix to multilayer on cylindrical coordinate is derived. The equivalent circuit constructed from coupling complex phasor makes it possible to obtain characteristics of TLIM. The validity of the method lo verified by comparing the experimental and theoretical results for a pilot machine in locked status.

  • PDF

Motion Control of Pneumatic Servo Cylinder Using Neural Network (신경회로망을 이용한 공압 서보실린더의 운동제어)

  • Cho, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.140-147
    • /
    • 2008
  • This paper describes a Neural Network based PD control scheme for motion control of pneumatic servo cylinder. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional linear controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. Based on the parameters thus identified, a PD feedback compensator is designed first and then a neural network is incorporated. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PD control.