• Title/Summary/Keyword: equivalent force

Search Result 713, Processing Time 0.023 seconds

Probability Distribution of Displacement Response of Structures with Friction dampers Excited by Earthquake Loads Generated Using Kanai-Tajimi Filter (Kanai-Tajimi 필터 인공지진 가진된 마찰형 감쇠를 갖는 구조물의 변위 응답 확률분포)

  • Youn, Kyung-Jo;Park, Ji-Hun;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-628
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that an earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF are obtained by regression analysis of the statistical distribution of the time history responses. Finally the correlation between PDFs and statistical response distribution is presented.

Study on Convergence Technique through Structural Analysis due to The Configuration of Door Hinge (경첩의 형상에 따른 구조 해석을 통한 융합 기술 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.3
    • /
    • pp.59-64
    • /
    • 2015
  • A hinge is the most important part constituting door. Nowadays, the hinge is subdivided all the more under the category of the function, shape and material and is enlarged at the usage. Therefore, it is necessary to improve the manufacturing technique and more specialized design must be developed. As the structural analysis is carried on the hinge model mounted at door in this study, the deformation, stress distribution and fatigue life are analyzed when the door is applied with uniform force. The durabilities of hinge models due to each shape are anticipated through this study. It is thought to be contributed at developing and designing more improved hinge model with durability. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

THE EFFECTS OF DESENSITIZING AGENTS AND TOOTH BRUSHING ON DENTIN PERMEABILITY, IN VITRO (지각과민 처치제 도포 후 칫솔질에 의한 마모가 상아질 투과도에 미치는 영향)

  • Lee Jong-Wook;Shim June-Sung;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.208-219
    • /
    • 2001
  • To study the effect of dentin permeability on a tooth with wear from tooth brushing after application of desensitizing agent, extracted teeth free from caries were chosen. Coronal dentin discs with thickness of 1mm were prepared. Using the split chamber device developed by Pashely, hydraulic conductance, scanning electron microscope images(SEM) and atomic force microscope images(AFM) were compared and contrasted before and immediately after the application of desensitizing agent and after equivalent tooth brushing of 1 week, 2 weeks, and 6 weeks. Four commercially available desensitizing agents were used in this study ; they were Gluma, Seal & Protect, All-Bond 2 and MS Coat. The results of this study are as follows. 1. On all specimens, the hydraulic conductance decreased after the application of tooth desensitizing agent. 2. Except the specimens treated with MS Coat, the remaining specimens had an increase in dentin permeability after tooth brushing for 1 and 2 weeks but a decrease after 6 weeks. 3. The specimens treated with MS Coat had statistically significant increase in the dentin permeability regardless with the duration of tooth brushing. 4. On examination of SEM and AFM, the dentinal tubule diameter had decreased after treatment of desensitizing agents. The specimens other than those treated with MS Coat, smear layers were noted after tooth brushing. It is not always consistant but the hydraulic conductance correlated with the images from SEM and AFM.

  • PDF

Modeling of the Powertrain System and the Vehicle Body for the Analysis of the Driving Comfortability (승차감 해석을 위한 동력전달계와 차량계의 모델링)

  • Park, Jin-Ho;Lee, Jang-Mu;Jo, Han-Sang;Gong, Jin-Hyeong;Park, Yeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.926-936
    • /
    • 2000
  • Actual and strict definition of the shift quality for the powertrain system equipped an automatic transmission must be understood through the acceleration change of the vehicle body, which the driver directly feels as a shift shock. For this reason, it is necessary to concurrently analyze the characteristics of the powertrain system and the vehicle body. This paper presents the mathematical model of the vehicle body, which is based on the equivalent lumped system, to append to the developed model of the powertrain system. The concept of tire slip is also introduced for the experimental relationship between tire/road and driving force. Using the developed dynamic simulation programs, shift transients characteristics are analyzed. Theoretical results are compared with experimental ones from real car tests in equal conditions in order to prove the validity of presented model. In these tests, the system to measure the vehicle acceleration is used with various speeds and engine throttle sensors. It is expected that the presented modeling techniques can provide good predictions of the vehicle driving comfortability.

A Study on the Properties in Friction Weldability of Dissimilar Aluminum Alloys A2024-T6/ A6061-T6 (A2024-T6/ A6061-T6의 마찰용접 특성에 관한 연구)

  • Lee Se-Gyoung;Min Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • This study deals with the friction welding of A2024- T6 to A6061- T6; The friction time was variable conditions under the conditions of spindle revolution of 2000rpm, friction pressure of 50MPa, upset pressure of 100MPa, and upset time of 5.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, of friction weld, and so the results were as follows. 1. When the friction time was 1.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 292MPa, which is $94.2\%$ of the base material's tensile strength(310MPa). At the same condition, the maximum shear strength was 2l2MPa, which is equivalent to $103\%$ of the base material's shear strength (205MPa). 2. At the same condition, the maximum vickers hardness was Hv 146 at A2024- T6 nearby weld interface, which is higher Hv3 than condition of the friction time 0.5seconds, and the maximum vickers hardness was Hvl20 from weld interface of A6061-T6, which is higher Hv28 then base material's. 3. The results of microstructure analysis show that the structures of two base materials have fractionized and rearranged along a column due to heating and axial force during friction, which has affected in raising hardness and tensile strength.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Curvature and Deflection of Reinforced Concrete Beams due to Shrinkgae (건조수축에 의한 철근콘크리트 보의 곡률 및 처짐)

  • 김진근;이상순;양주경;신병천
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.261-268
    • /
    • 1998
  • Deflections due to shrinkage are frequently ignored in design calculation. Especially for thin member, shrinkage often causes considerable deformations as wellas appreciable stress changes. Several methods for computing shringkage curvature have been proposed by many researchers. Some of the approximte methods widely used in the recent years are the equivalent tensile force method, Miller's method and Branson's method. These methods were, however, somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, an approximate method for computing shrinkage curvature and deflection is proposed. Curvature due to shrinkage is derived from the requirements of strain compatibility and equilibrium of a section and the age-adjusted effective modulus method. The proposed method is verified by comparison with several experimental measurements. The correlations between calculated and measured curvatures is very good.

Nonlinear Analysis of RC Shell Structures Including Creep and Shrinkage Effects (크리프와 건조수축을 고려한 RC쉘 구조물의 비선형 해석)

  • 정진환;한충목;조현영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.181-188
    • /
    • 1993
  • In this study, a numerical method for the material nonlinear analysis of reinforced concrete shell structures including the time dependent effects due to creep and shrinkage is developed. Degenerate shell elements with the layered approach are used. The perfect or strain hardening plasticity model in compression and the linearly elastic model in tension until cracking for concrete are employed. The reinforcing bars are considered as a steel layer of equivalent thickness. Each :steel layer has an uniaxial behaviour resisting only the axial force in the bar direction. A bilinear idealization is adopted to model elasto-plastic stress-strain relationships. For the nonlinear anaysis, incremental load method combined with unbalanced load iterations for each load increment is used. To include time dependent effects of concrete, time domain is divided into several time steps which may have different length. Some numerical examples are presented to study the validity and applicability of the present method. The results are compared with experimental and numerical results obtained by other investigator.

Development of Nonlinear Analysis Technic to Determine the Ultimate Load in Electric Transmission Tower (송전철탑의 극한하중 도출을 위한 비선형해석 기법)

  • Kim, Woo Bum;Choi, Byong Jeong;Ahn, Jin Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.389-398
    • /
    • 2008
  • The current design practice of electric transmission tower is based on the allowable stress design. However, it is difficult to find the cause behind a transmission tower's collapse by the above design approach as the collapse is caused by large secondary deformations based on and geometrical nonlinear behavior.influence factor for the nonlinear behavior is mainly residual stress, initial imperfection and end restraints on members. In this study, the necessity of the nonlinear analysis is examined through the comparison between elastic ana the nonlinear analysis, a new analytical method (equivalent nonlinear analysis technique) is proposed. To confirm the reliability of the proposed method, the computed ultimate load of the transmission tower using the method was compared with that of the nonlinear finite element analysis. Effects of parameters, such as compressive force and the slenderness ratio of the brace member on the main post member, were investigated. The effective member length according to influential parameters was formulated in table form for practical purposes.

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.