• Title/Summary/Keyword: equivalent design parameter

Search Result 173, Processing Time 0.023 seconds

The CMOS RF model parameter for high frequency communication circuit design (고주파통신회로 설계를 위한 CMOS RF 모델 파라미터)

  • 여지환
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.123-127
    • /
    • 2001
  • The prediction method of the parameter C/sub gs/ of CMOS transistor is proposed by calculating the mobil charge in inversion layer of COMS transistor. This parameter C/sub gs/ decided on the cutoff frequency in MOS transistor in RF range and coupled input and output. This parameter C/sub gs/ in RF range is very important parameter in small signal circuit model. This proposed method is contributed to developing software of extracting parameter value in equivalent circuit model. The method provide the important information to construct a RF nonlinear model for multifinger gate MOSFET. This method will be very valuable to develop a large signal MOSFET model for nonlinear RF IC design.

  • PDF

A Review of Li-ion Battery Equivalent Circuit Models

  • Zhang, Xiaoqiang;Zhang, Weiping;Lei, Geyang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.311-316
    • /
    • 2016
  • Batteries are critical components of electric vehicles and energy storage systems. The connection of a battery to the power grid for charge and discharge greatly affects energy storage. Therefore, an accurate and easy-to-observe battery model should be established to achieve systematic design, simulation, and SOC (state of charge) estimations. In this review, several equivalent circuit models of representative significance are explained, and their respective advantages and disadvantages are compared to determine and outline their reasonable applications to Li-ion batteries. Numerous commonly used model parameter identification principles are summarized as well, and basic model verification methods are briefly introduced for the convenient use of such models.

Determination of Site Classification Method in the Korean Peninsula Based On NYCDOT2008(2008 New York City DOT Seismic Design Guidelines) (NYCDOT2008 기준을 이용한 국내 지반의 지반분류방법 결정)

  • Kang, Ho-Deok;Kim, Ki-Sang;Sun, Chang-Kuk;Kim, Myung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.777-784
    • /
    • 2010
  • In the current Korean seismic design guide, the site classification and the corresponding site coefficients were determined based on the UBC-1997 (Uniform Building Code). In order to develop the current site classification system, it is important to compare the local site conditions in Korea to other countries which have similar seismic design guides. In the eastern United States, New York City(40degrees 45minutes north latitude, 73degrees 59minutes west longitude) suggested that current design guidelines are unsuitable to shallow bedrock depth sites. So the 3-parameter methods are performed for new criteria in New York City. In this study, site response analyses were performed at 181 study sites using one-dimensional equivalent linear to evaluate the site-specific earthquake ground motions at inland areas in the Korean peninsula and reclassify the results according to similar ground motions using the 3-parameter methods. It is effective that multi-parameter methods for Korean site characteristics in comparison with single parameter method.

  • PDF

LPD(Linear Parameter Dependent) System Modeling and Control of Mobile Soccer Robot

  • Kang, Jin-Shik;Rhim, Chul-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • In this paper, a new model for mobile soccer robot, a type of linear system, is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and plant be well conditioned and the outer loop is a well-known PI controller designed for tracking the reference input, is suggested. Because the plant, the soccer robot, is parameter dependent, it requires the controller to be insensitive to the parameter variation. To achieve this objective, the pole-sensitivity as a pole-variation with respect to the parameter variation is defined and design algorithms for state-feedback controllers are suggested, consisting of two matrices one of which is for general pole-placement and other for parameter insensitive. This paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ cost. By using these properties, we suggest a tuning procedure for the PI controller. We that the control algorithm in this paper, based on the linear system theory, is well work by simulation, and the LPD system modeling and control are more easy treatment for soccer robot.

Equivalent linear and bounding analyses of bilinear hysteretic isolation systems

  • Wang, Shiang-Jung;Lee, Hsueh-Wen;Yu, Chung-Han;Yang, Cho-Yen;Lin, Wang-Chuen
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.395-409
    • /
    • 2020
  • With verifications through many relevant researches in the past few decades, adopting the equivalent lateral force procedure for designing seismically isolated structures as a preliminary or even final design approach has become considerably mature and publicly acceptable, especially for seismic isolation systems that mechanically exhibit bilinear hysteretic behavior. During the design procedure, in addition to a given seismic demand, structural designers still need to previously determine three parameters, such as mechanical properties of seismic isolation systems or design parameters and performance indices of seismically isolated structures. However, an arbitrary or improper selection of given parameters might cause diverse or even unacceptable design results, thus troubling structural designers very much. In this study, first, based on the criterion that at least either two design parameters or two performance indices of seismically isolated structures are decided previously, the rationality and applicability of design results obtained from different conditions are examined. Moreover, to consider variations of design parameters of seismically isolated structures attributed to uncertainties of mechanical properties of seismic isolation systems, one of the conditions is adopted to perform bounding analysis for seismic isolation design. The analysis results indicate that with a reasonable equivalent damping ratio designed, considering a specific variation for two design parameters (the effective stiffness and equivalent damping ratio) could present more conservative bounding design results (in terms of isolation displacement and acceleration transmissibility) than considering the same variation but for two mechanical properties (the characteristic strength and post-yield stiffness).

Equivalent Circuit Modelling of FFR Transducer Array for Sonar System Design (소나 시스템 설계를 위한 FFR 트랜스듀서 어레이의 등가회로 모델링)

  • Kim, In-Dong;Choi, Seung-Soo;Lee, Haksue;Lee, Seung Woo;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.629-635
    • /
    • 2017
  • Free-Flooded Ring (FFR) transducer array for use in Sonar system can be driven with large amplitude in a wide frequency band due to its structural characteristics, in which two resonances of a ring mode (1st radial mode) and an inner cavity vibration mode occur in a low frequency band. Since its sound wave generation characteristics are not influenced by the water pressure, the FFR transducer array is widely used in the deep sea. So FFR has been recognized as a low-frequency active sound source and has received much attention ever since. In order to utilize the FFR transducer array for SONAR systems in military and industrial applications, its equivalent electric circuit model is necessary especially to design the matching circuit between the driving power amplifier and the FFR transducer array. Thus this paper proposes the equivalent electric circuit model of FFR transducer array by using measured values of parameter, and suggest the improved method of parameter identification. Finally it verifies the effectiveness of the proposed circuit model of FFR transducer array by experimental measurements.

A Study on Dynamic Parameter Design Procedure Considering the Signal Factor and the Quality Characteristics with Continuous Variable (신호인자와 특성치가 연속형 변수인 경우를 고려한 동적파라미터 설계 절차에 관한 연구)

  • 배홍석;이만웅;송서일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.243-254
    • /
    • 1996
  • In this study, a model and an analysis method for parameter design is presented a linear relation between the input signal and the ideal value of a performance characteristic. Furthermore, There presented a new performance measure, expected quality loss after adjustment, which is proved to be equivalent to Taguchi's SN ratio approximately. On the basis of this, a two-step optimization procedure is proposed for parameter design considering the signal factor and the quality characteristics with continuous variable. Proposed procedure and Taguchi two-stage procedure are compared.

  • PDF

Optimal equivalent-time sampling for periodic complex signals with digital down-conversion

  • Kyung-Won Kim;Heon-Kook Kwon;Myung-Don Kim
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.238-249
    • /
    • 2024
  • Equivalent-time sampling can improve measurement or sensing systems because it enables a broader frequency band and higher delay resolution for periodic signals with lower sampling rates than a Nyquist receiver. Meanwhile, a digital down-conversion (DDC) technique can be implemented using a straightforward radio frequency (RF) circuit. It avoids timing skew and in-phase/quadrature gain imbalance instead of requiring a high-speed analog-to-digital converter to sample an intermediate frequency (IF) signal. Therefore, when equivalent-time sampling and DDC techniques are combined, a significant synergy can be achieved. This study provides a parameter design methodology for optimal equivalent-time sampling using DDC.

Characteristics Analysis and Design of Transverse Flux Linear Actuator (횡축형 선형 엑츄에이터의 2D FEM에 의한 특성해석과 설계)

  • Lee, Ji-Young;Ha, Kyung-Ho;Hong, Jung-Pyo;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.268-270
    • /
    • 2000
  • This paper deals with the design of transverse flux linear actuator based on the proposed design procedure. To satisfy requirement specifications, the initial model is designed by the equivalent magnet circuit and then the detailed design is achieved by Finite Element Method(FEM) using the equivalent reluctance 2D model. The effects of the design parameter on the static characteristics are investigated to increase the thrust.

  • PDF

Vibration Ride Quality Optimization of a Suspension Seat System Using Genetic Algorithm (유전자 알고리즘을 이용한 SUSPENSION SEAT SYSTEM의 진동 승차감 최적화)

  • Park, S.K.;Choi, Y.H.;Choi, H.O.;Bae, B.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.584-589
    • /
    • 2001
  • This paper presents the dynamic parameter design optimization of a suspension seat system using the genetic algorithm. At first, an equivalent 1-D.O.F. mass-spring-damper model of a suspension seat system was constructed for the purpose of its vibration analysis. Vertical vibration response and transmissibility of the equivalent model due to base excitations, which are defined in the ISO's seat vibration test codes, were computed. Furthermore, seat vibration test, that is ISO's damping test, was carried out in order to investigate the validity of the equivalent suspension seat model. Both analytical and experimental results showed good agreement each other. For the design optimization, the acceleration transmissibility of the suspension seat model was adopted as an object function. A simple genetic algorithm was used to search the optimum values of the design variables, suspension stiffness and damping coefficient. Finally, vibration ride performance test results showed that the optimum suspension parameters gives the lowest vibration transmissibility. Accordingly the genetic algorithm and the equivalent suspension seat modelling can be successfully adopted in the vibration ride quality optimization of a suspension seat system.

  • PDF