• Title/Summary/Keyword: equivalent circuit.

Search Result 1,772, Processing Time 0.022 seconds

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

  • Ham, Sang-Hwan;Cho, Su-Yeon;Kang, Dong-Woo;Lee, Hyung-Woo;Chan, Hong-Soon;Lee, Ju
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • This paper describes design and characteristic analysis of long primary type linear synchronous motor (LSM) for high speed train system. LSM is designed using loading distribution method and magnetic equivalent circuit. For characteristic analysis of LSM, analytical and numerical methods are applied. Analytical method for solving the magnetic field distribution of the analytic model is based on the Maxwell’s equations. Using the characteristic equation and magnetic equivalent circuit, we analyze the effect of variation of parameters, and then we validate the result by comparing with numerical method by finite element method (FEM). We compare the analytical method with numerical method for analyzing the effect by variable parameters. This result will be useful of design and forecast of performance without FEM.

  • PDF

Stator Shape Optimization for Electrical Motor Torque Density Improvement

  • Kim, Hae-Joong;Kim, Youn Hwan;Moon, Jae-Won
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.570-576
    • /
    • 2016
  • The shape optimization of the stator and the rotor is important for electrical motor design. Among many motor design parameters, the stator tooth and yoke width are a few of the determinants of noload back-EMF and load torque. In this study, we proposed an equivalent magnetic circuit of motor stator for efficient stator tooth and yoke width shape optimization. Using the proposed equivalent magnetic circuit, we found the optimal tooth and yoke width for minimal magnetic resistance. To verify if load torque is truly maximized for the optimal tooth and yoke width indicated by the proposed method, we performed finite element analysis (FEA) to calculate load torque for different tooth and yoke widths. From the study, we confirmed reliability and usability of the proposed equivalent magnetic circuit.

Silicon Substrate Coupling Modeling, Analysis, and Substrate Parameter Extraction Method for RF Circuit Design (RF 회로 설계를 위한 실리콘 기판 커플링 모델링, 해석 및 기판 파라미터 추출)

  • Jin, Woo-Jin;Eo, Yung-Seon;Shim, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.49-57
    • /
    • 2001
  • In this paper, equivalent circuit model and novel model parameter extraction method of a silicon(Si) substrate are presented. Substrate coupling through Si-substrate is quantitatively investigated by analyzing equivalent circuit with operating frequency and characteristic frequencies (i.e., pole and zero frequency) of a system. For the experimental verification of the equivalent circuit and parameter extraction method, test patterns are designed and fabricated in standard CMOS technology with various isolation distances, substrate resistivity, and guard-ring structures. Then, these are measured in l00MHz-20GHz frequency range by using vector network analyzer. It is shown that the equivalent-circuit-based HSPICE simulation results using extracted parameters have excellent agreement with the experimental results. Thus, the proposed equivalent circuit and parameter extraction methodology can be usefully employed in mixed-signal circuit design and verification of a circuit performance.

  • PDF

Simulation of Surface Acoustic Wave Filters Using SPICE (SPICE를 사용한 표면음파 필터의 시뮬레이션)

  • Yu, Sang-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.142-147
    • /
    • 2001
  • Using transmission-line equivalent circuit based on cross-field model for an interdigital acoustic wave transducer, an efficient simulation technique of SAW filters by SPICE is proposed. Propagation of surface acoustic wave is modeled as transmission line so that frequency-dependent circuit elements are not needed in the equivalent circuit of an interdigital transducer. Because the equivalent circuits for frequency-dependent circuit elements are not derived approximately, and a small number of circuit elements are used in the equivalent circuit for filters, simulation time is much reduced. The utility of the proposed technique is demonstrated through simulation for the characteristics of SAW filters such as insertion loss, input admittance, passband ripple, and harmonic frequency response.

  • PDF

Modeling and Analysis of the Fractional Order Buck Converter in DCM Operation by using Fractional Calculus and the Circuit-Averaging Technique

  • Wang, Faqiang;Ma, Xikui
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1008-1015
    • /
    • 2013
  • By using fractional calculus and the circuit-averaging technique, the modeling and analysis of a Buck converter with fractional order inductor and fractional order capacitor in discontinuous conduction mode (DCM) operations is investigated in this study. The equivalent averaged circuit model of the fractional order Buck converter in DCM operations is established. DC analysis is conducted by using the derived DC equivalent circuit model. The transfer functions from the input voltage to the output voltage, the duty cycle to the output voltage, the input impedance, and the output impedance of the fractional order Buck converter in DCM operations are derived from the corresponding AC-equivalent circuit model. Results show that the DC equilibrium point, voltage ratio, and all derived transfer functions of the fractional order Buck converter in DCM operations are affected by the inductor order and/or capacitor order. The fractional order inductor and fractional order capacitor are designed, and PSIM simulations are performed to confirm the correctness of the derivations and theoretical analysis.

Lumped Element MMIC Direction Coupler Based on Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 MMIC 집중 소자형 방향성 결합기)

  • Kang Myung-Soo;Park Jun-Seok;Lee Jae-Hak;Kim Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.577-582
    • /
    • 2004
  • In this paper, lumped equivalent circuits for a conventional parallel directional coupler are proposed. This equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of parallel-coupled line. By using the derived design formula, we have designed the 3dB and 4.7dB MMIC couplers at the center frequency of 3.4GHz and 5.6GHz respectively. Measurements for the designed MMIC directional couplers show at 4dB and 5.2dB-coupling value at the center frequency of 3.4GHz and 5.6GHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper

A Study on The Design of Planer Comb-Line Bandpass Filter Using Equivalent Circuits of Asymmetrical Coupled Line (비대칭 결합선로 등가회로를 사용한 Comb-line 구조의 대역통과 여파기 설계)

  • Yun, Jae-Ho;Park, Jun-Seok;Kim, Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.368-374
    • /
    • 2002
  • In this paper, we introduce a procedure to obtain a equivalent circuit of comb-line band pass filter. By employing equivalent circuits of each asymmetrical coupled line. we composed the full equivalent circuit of comb-line bandpass filter and derived simple design equations for extracting each line's impedance. To show the validity of design equations, we simulated and fabricated a planar type comb-line bandpass filter, which has center frequency 1.8㎓, band-width 50㎒ and four resonators. The resulting filter is very compact, have broad stop band with the second pass band centered at four times the center frequency of the first pass band. The experimental results show exact performances of design specification.

Study on the Thermal Transient Response of TSV Considering the Effect of Electronic-Thermal Coupling

  • Li, Chunquan;Zou, Meng-Qiang;Shang, Yuling;Zhang, Ming
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.356-364
    • /
    • 2015
  • The transmission performance of TSV considering the effect of electronic-thermal coupling is an new challenge in three dimension integrated circuit. This paper presents the thermal equivalent circuit (TEC) model of the TSV, and discussed the thermal equivalent parameters for TSV. Si layer is equivalent to transmission line according to its thermal characteristic. Thermal transient response (TTR) of TSV considering electronic-thermal coupling effects are proposed, iteration flow electronic-thermal coupling for TSV is analyzed. Furthermore, the influences of TTR are investigated with the non-coupling and considering coupling for TSV. Finally, the relationship among temperature, thickness of $SiO_2$, radius of via and frequency of excitation source are addressed, which are verified by the simulation.

Investigation of Rise Time and Overshoot in Pulse Transformers with Different Topologies for Electromagnetic Trigger of SCRs

  • Lv, Gang;Zeng, Dihui;Zhou, Tong
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.902-909
    • /
    • 2018
  • This study investigates the influences of different core parameters on the dynamic performances, such as rise time and overshoot, in pulse transformers for the triggering circuit of SCRs. First, a simplified transformer equivalent circuit, which emerges from a standard transformer equivalent circuit, is developed to analyze the step response. Second, the relations between the dynamic performances and the parasitic parameters are calculated by the simplified equivalent circuit. Third, the variations of rise time and overshoot, which are vital to the stability of triggering SCRs, with different core parameters, such as mechanic dimensions and topologies, are comprehensively investigated by analyzing the parasitic parameters. Finally, prototype transformers are fabricated to experimentally validate the analysis. The presented method can practically instruct the design of a pulse transformer for triggering SCRs.

An Equivalent Circuit for a Single-Phase Motor with Non-Quadrature Stator Windings (비대칭권선축단상전동기의 등가회로에 관해서)

  • Min Ho Park
    • 전기의세계
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 1972
  • General steady state equivalent circuits are derived for the family of single phase motor having two windings with non-quadrature. First, the fundamental voltage equations of motor are derived by Faraday-Krichhoff's low in the fiew of the flux distribution in the modified motor with Kron primitive machine. Those equations are arranged in to f-b equations by transformation matrix. To using the above equations for circuit; 1) The concept of current-source was much help to sove the realtions between matrix impedance equation and circuit analysis 2) The simplification of the circuit to the mutual impedance matrix elements is easy to considerations of motor characteristics in the case of inserted external auxiliary winding impedance. Finally, this equivalent circuit showing as a single phase induction motor with quadrature winding is described by each conditions.

  • PDF