• Title/Summary/Keyword: equilibrium point

Search Result 561, Processing Time 0.025 seconds

BIFURCATIONS OF STOCHASTIC IZHIKEVICH-FITZHUGH MODEL

  • Nia, Mehdi Fatehi;Mirzavand, Elaheh
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.402-418
    • /
    • 2022
  • Noise is a fundamental factor to increased validity and regularity of spike propagation and neuronal firing in the nervous system. In this paper, we examine the stochastic version of the Izhikevich-FitzHugh neuron dynamical model. This approach is based on techniques presented by Luo and Guo, which provide a general framework for the bifurcation and stability analysis of two dimensional stochastic dynamical system as an Itô averaging diffusion system. By using largest lyapunov exponent, local and global stability of the stochastic system at the equilibrium point are investigated. We focus on the two kinds of stochastic bifurcations: the P-bifurcation and the D-bifurcations. By use of polar coordinate, Taylor expansion and stochastic averaging method, it is shown that there exists choices of diffusion and drift parameters such that these bifurcations occurs. Finally, numerical simulations in various viewpoints, including phase portrait, evolution in time and probability density, are presented to show the effects of the diffusion and drift coefficients that illustrate our theoretical results.

Measurement of Flash Point for Binary Mixtures of 2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane, and Toluene at 101.3 kPa (2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane 그리고 Toluene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.161-167
    • /
    • 2020
  • For the design of the prevention and mitigation measures in process industries involving flammable substances, reliable safety data are required. An important property used to estimate the risk of fire and explosion for a flammable liquid is the flash point. Flammability is an important factor to consider when developing safe methods for storing and handling solids and liquids. In this study, the flash point data were measured for the binary systems {2-butanol + 2,2,4-trimethylpentane}, {2-butanol + methylcyclohexane} and {2-butanol + toluene} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a Stanhope-Seta closed cup flash point tester. A minimum flash point behavior was observed in the binary systems as in the many cases for the hydrocarbon and alcohol mixture that were observed. The measured flash points were compared with the predicted values calculated via the following activity coefficient (GE) models: Wilson, Non-Random Two-Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC) models. The predicted data were only adequate for the data determined by the closed-cup test method and may not be appropriate for the data obtained from the open-cup test method because of its deviation from the vapor liquid equilibrium. The predicted results of this work can be used to design safe petrochemical processes, such as the identification of safe storage conditions for non-ideal solutions containing flammable components.

Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks

  • Kim, Daehyun;Ohr, Sewon
    • Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.162-177
    • /
    • 2020
  • Background: Ecologists have achieved much progress in the study of mechanisms that maintain species coexistence and diversity. In this paper, we reviewed a wide range of past research related to these topics, focusing on five theoretical bodies: (1) coexistence by niche differentiation, (2) coexistence without niche differentiation, (3) coexistence along environmental stress gradients, (4) coexistence under non-equilibrium versus equilibrium conditions, and (5) modern perspectives. Results: From the review, we identified that there are few models that can be generally and confidently applicable to different ecological systems. This problem arises mainly because most theories have not been substantiated by enough empirical research based on field data to test various coexistence hypotheses at different spatial scales. We also found that little is still known about the mechanisms of species coexistence under harsh environmental conditions. This is because most previous models treat disturbance as a key factor shaping community structure, but they do not explicitly deal with stressful systems with non-lethal conditions. We evaluated the mainstream ideas of niche differentiation and stochasticity for the coexistence of plant species across salt marsh creeks in southwestern Denmark. The results showed that diversity indices, such as Shannon-Wiener diversity, richness, and evenness, decreased with increasing surface elevation and increased with increasing niche overlap and niche breadth. The two niche parameters linearly decreased with increasing elevation. These findings imply a substantial influence of an equalizing mechanism that reduces differences in relative fitness among species in the highly stressful environments of the marsh. We propose that species evenness increases under very harsh conditions if the associated stress is not lethal. Finally, we present a conceptual model of patterns related to the level of environmental stress and niche characteristics along a microhabitat gradient (i.e., surface elevation). Conclusions: The ecology of stressful systems with non-lethal conditions will be increasingly important as ongoing global-scale climate change extends the period of chronic stresses that are not necessarily fatal to inhabiting plants. We recommend that more ecologists continue this line of research.

Downsizing and Price Increases in Response to Increasing Input Cost (제조비용 증가에 대한 대응 전략으로서 제품 크기 축소와 가격 인상의 비교 연구)

  • Kang, Yeong Seon;Kang, Hyunmo
    • Korean Management Science Review
    • /
    • v.32 no.1
    • /
    • pp.83-100
    • /
    • 2015
  • We analyze a duopoly competition when two firms face input cost increases. The objective of this study is to determine the firms' optimal strategy between a price increase and downsizing under conditions of a spatially differentiated market and consumers' diminishing utility on the product size. We develop a theoretical model of two competing firms offering homogenous products using the standard Hotelling model to determine how firms' optimal strategies change when facing input cost increases. In this paper, there are two types of duopoly competitions: symmetric and asymmetric. In the symmetric case, the two firms have the same marginal cost and are producing and selling identical products. In the asymmetric case, the two firms have different marginal costs. The results show that the optimal strategy decision depends on the size of the input cost increase and the cost differences between the two firms. We find that when two firms are asymmetric (i.e., they have different marginal costs), the two firms might choose asymmetric pairs of strategies in equilibrium under certain conditions. When the cost differences between the two firms are sufficiently large and the cost increase is sufficiently small, the cost leader chooses price increase, and the cost-disadvantaged firm chooses downsizing in equilibrium. This asymmetric strategy reduces price competition between two firms, and consumers are better off. When the cost differences between the two firms are sufficiently large, downsizing is the dominant strategy for the cost-disadvantaged firm. The cost-disadvantaged firm finds it more profitable to reduce the product size than to increase its price to reduce price competition, because consumers prefer downsizing to price increases. This paper might be a good starting point for further analytical research in this area.

Design of Naphtha Splitter Unit with Petlyuk Distillation Column Using Aspen HYSYS Simulation (Aspen HYSYS를 이용한 나프타 분리공정의 Petlyuk Distillation Column 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • FRN (Full range Naphtha) is distilled from crude oil in a Naphtha Splitter Unit and is separated into the Light Straight Naphtha, Heavy Naphtha, and kerosene according to the boiling point in sequence. This separation is conducted using a series of binary-like columns. In this separation method, the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by a stage to stage computation with an ideal tray efficiency in the equilibrium condition. Compared to the performance of a conventional system of 3-column model, the design outcome indicates that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. An analysis of the performance of the new process indicated an energy saving of 12.3% under same total number of trays and with a saving of the initial investment cost.

The Power Loss Characteristics of Mn-Zn Ferrites at MHz Region with Sintering Condition (소성조건에 따른 MHz 대역의 Mn-Zn ferrite 전력손실 특성)

  • Suh J.J.;Song B.M
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.26-31
    • /
    • 2003
  • The power loss characteristics of Mn-Zn ferrite were observed with the sintering temperature. In case of $1150 ^{\circ}C$ sintering, the core loss increased with measuring temperature, and does not have minimum value at the point where the magnetocrystalline anisotropy be 'zero'. This reason mainly due to the change of core loss mechanism with grain size which affects residual loss. The grain size and sintered density slightly increased with equilibrium oxygen partial pressure at$ 1150 ^{\circ}C$ sintering. The resistivity and initial permeability showed no significance with atmosphere, these results due to complex effect of $Fe^{2+}$ concentration and microstructure change. The core loss at $100^{\circ}C$ decreased as the equilibrium oxygen partial pressure increased.e increased.

Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production

  • Mandal, Subhasis;Jana, Amiya K.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • In this article, we develop a reactive distillation (RD) column configuration for the production of hydrogen. This RD column is in the HI decomposition section of the sulphur - iodine (SI) thermochemical cycle, in which HI decomposition and H2 separation take place simultaneously. The section plays a major role in high hydrogen production efficiency (that depends on reaction conversion and separation efficiency) of the SI cycle. In the column simulation, the rigorous thermodynamic phase equilibrium and reaction kinetic model are used. The tuning parameters involved in phase equilibrium model are dependent on interactive components and system temperature. For kinetic model, parameter values are adopted from the Aspen flowsheet simulator. Interestingly, there is no side reaction (e.g., solvation reaction, electrolyte decomposition and polyiodide formation) considered aiming to make the proposed model simple that leads to a challenging prediction. The process parameters are determined on the basis of optimal hydrogen production as reflux ratio = 0.87, total number of stages = 19 and feeding point at 8th stage. With this, the column operates at a reasonably low pressure (i.e., 8 bar) and produces hydrogen in the distillate with a desired composition (H2 = 9.18 mol%, H2O = 88.27 mol% and HI = 2.54 mol%). Finally, the results are compared with other model simulations. It is observed that the proposed scheme leads to consume a reasonably low energy requirement of 327 MJ/kmol of H2.

Centroid teaching-learning suggestion for mathematics curriculum according to 2009 Revised National Curriculum (2009 개정 교육과정에 따른 수학과 교육과정에서의 무게중심 교수.학습 제안)

  • Ha, Young-Hwa;Ko, Ho-Kyoung
    • Communications of Mathematical Education
    • /
    • v.25 no.4
    • /
    • pp.681-691
    • /
    • 2011
  • Mathematics curriculum according to 2009 Revised National Curriculum suggests that school mathematics must cultivate interest and curiosity about mathematics in addition to creative thinking ability of students, and ability and attitude of observing and analyzing many things happening around. Centroid of a triangle in 2007 Revised National Curriculum is defined as 'an intersection point of three median lines of a triangle' and it has been instructed focusing on proof study that uses characteristic of parallel lines and similarity of a triangle. This could not teach by focusing on the centroid itself and there is a problem of planting a miss concept to students. And therefore this writing suggests centroid must be taught according to its essence that centroid is 'a dot that forms equilibrium', and a justification method about this could be different.

A STUDY ON ADSORPTION AND DESORPTION BEHAVIORS OF 14C FROM A MIXED BED RESIN

  • Park, Seung-Chul;Cho, Hang-Rae;Lee, Ji-Hoon;Yang, Ho-Yeon;Yang, O-Bong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.847-856
    • /
    • 2014
  • Spent resin waste containing a high concentration of $^{14}C$ radionuclide cannot be disposed of directly. A fundamental study on selective $^{14}C$ stripping, especially from the IRN-150 mixed bed resin, was carried out. In single ion-exchange equilibrium isotherm experiments, the ion adsorption capacity of the fresh resin for non-radioactive $HCO_3{^-}$ ion, as the chemical form of $^{14}C$, was evaluated as 11mg-C/g-resin. Adsorption affinity of anions to the resin was derived in order of $NO_3{^-}$ > $HCO_3{^-}{\geq}H_2PO_4{^-}$. Thus the competitive adsorption affinity of $NO_3{^-}$ ion in binary systems appeared far higher than that of $HCO_3{^-}$ or $H_2PO_4{^-}$, and the selective desorption of $HCO_3{^-}$ from the resin was very effective. On one hand, the affinity of $Co^{2+}$ and $Cs^+$ for the resin remained relatively higher than that of other cations in the same stripping solution. Desorption of $Cs^+$ was minimized when the summation of the metal ions in the spent resin and the other cations in solution was near saturation and the pH value was maintained above 4.5. Among the various solutions tested, from the view-point of the simple second waste process, $NH_4H_2PO_4$ solution was preferable for the stripping of $^{14}C$ from the spent resin.

Numerical Analysis of Rocket Exhaust Plume with Equilibrium Chemistry and Thermal Radiation (화학 평형과 열복사를 포함한 로켓 플룸 유동 해석)

  • Shin Jae-Ryul;Choi Jeong-Yeol;Choi Hwan-Seck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-45
    • /
    • 2005
  • Numerical study is carried out to investigate the effects of chemistry and thermal radiation on the rocket plume flow field at various altitudes. Navier-Stokes equations for compressible flows were solved by a fully-implicit TVD code based on the finite volume method. An infinitely fast chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thick media were incorporated with the fluid dynamics code. The plume flow fields of a kerosene-fueled rocket flying at Mach number zero at sea-level, 1.16 at altitude of 5.06 km and 2.90 at 17.34 km were numerically analyzed. Results showed the plume structures at different altitude conditions with the effects of chemistry and radiation. It is understood that the excess temperature by the chemical reactions in the exhaust gas may not be ignored in the view point of propulsion performance and thermal protection of the rocket base, especially at higher altitude conditions.