• Title/Summary/Keyword: equilibrium isotherm

Search Result 366, Processing Time 0.026 seconds

Adsorption Characteristics of Flue Gas Components on Zeolite 13X and Effects of Impurity (제올라이트 13X에 의한 배가스 성분의 흡착 특성 및 불순물의 영향)

  • Suh, Sung-Sup;Lee, Ho-Jin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.838-846
    • /
    • 2016
  • Most of combustion processess used in industries require recovering or removing flue gas components. Recently a new MBA (moving bed adsorption) process for recovering $CO_2$ using zeolite 13X was developed. In this study, adsorption experiments for carbon dioxide, nitrogen, sulfur dioxide, and water vapor on zeolite 13X were carried out. Adsorption equilibrium and adsorption rate into solid particle were investigated. Langmuir, Toth, and Freundlich isotherm parameters were calculated from the experiment data at various temperatures. Experimental results were consistent with the theoretically predicted values. Also $CO_2$ adsorption amount was measured under the conditions with impurities such as $SO_2$ and $H_2O$. Binary adsorption data were well fitted to the extended Langmuir isotherm using parameters obtained from pure component experiment. However, $H_2O$ impurity less than, roughly, ${\sim}10^{-5}H_2O\;mol/g$ zeolite 13X enhanced slightly $CO_2$ adsorption. Spherical particle diffusion model well described experimentally measured adsorption rate. Diffusion coefficients and activation energies of $CO_2$, $SO_2$, $N_2$, $H_2O$ were obtained. Diffusion coefficients of $CO_2$ and $SO_2$ decreased with small amount of preadsorbed impurity. Parameter values from this study will be helpful to design of real commercial adsorption process.

Adsorption Characteristics of Copper using Biochar Derived from Exhausted Coffee Residue (커피찌꺼기 biochar를 활용한 구리의 흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Yeong-Jin;Kim, Seong-Heon;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • BACKGROUND: There is very limited knowledge of the effects of biochar derived from exhausted coffee residue on metal adsorption processes. Furthermore, only limited information is available on the adsorption mechanism of copper. The aim of this study was to evaluate the absorption behaviors of copper by biochar derived from exhausted coffee residue. METHODS AND RESULTS: Biochars produced by pyrolysis of exhausted coffee residue at $300^{\circ}C$(CB300) and $600^{\circ}C$(CB600) were characterized and investigated as adsorbents for the removal of copper from aqueous solution. The results indicated that the adsorption equilibrium was achieved around 2 h and the pseudo-second-order kinetic model fit the data better than the pseudo-first-order kinetic model. The maximum Cu adsorption capacities of CB600 by Freundlich and Langmuir isotherms were higher than those of CB300. The adsorption data were well described by a Langmuir isotherm compare to Freundlich isotherm. CONCLUSION: Our results suggest that exhausted coffee residue can be used as feedstock materials to produce high quality biochar, which could be used as adsorbents to removal copper.

Adsorption Characteristics of Reactive Red 120 by Coal-based Granular Activated Carbon : Isotherm, Kinetic and Thermodynamic Parameters (석탄계 입상활성탄에 의한 Reactive Red 120의 흡착 특성 : 등온선, 동력학 및 열역학 파라미터)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.164-171
    • /
    • 2020
  • Adsorption characteristics of reactive red 120 (RR 120) dye by a coal-based granular activated carbon (CGAC) from an aqueous solution were investigated using the amount of activated carbon, pH, initial concentration, contact time and temperature as adsorption variables. Isotherm equilibrium relationship showed that Langmuir's equation fits better than that of Freundlich's equation. The adsorption mechanism was considered to be superior to the adsorption of monolayer with uniform energy distribution. From the evaluated Langmuir separation coefficients (RL = 0.181~0.644), it was found that this adsorption process belongs to an effective treatment area (RL = 0~1). The adsorption energy determined by Temkin's equation and Dubinin-Radushkevich's equation was E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. The adsorption process showed the physical adsorption (E < 20 J/mol and B < 8 kJ/mol). The adsorption kinetics followed the pseudo first order model. The adsorption reaction of RR 120 dye on CGAC was found to increase spontaneously with increasing the temperature because the free energy change decreased with increasing the temperature. The enthalpy change (12.747 kJ/mol) indicated an endothermic reaction. The isosteric heat of adsorption (△Hx = 9.78~24.21 kJ/mol) for the adsorption reaction of RR 120 by CGAC was revealed to be the physical adsorption (△Hx < 80 kJ/mol).

Characteristics and Mechanisms of Phosphate Sorption by Calcined Oyster Shell (소성 굴패각에 의한 인산염의 흡착특성 및 메커니즘)

  • Park, Jong-Hwan;Heo, Jae-Young;Lee, Su-Lim;Lee, Jae-Hoon;Hwang, Se-Wook;Cho, Hyeon-Ji;Kwon, Jin-Hyeuk;Chang, Young-Ho;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • BACKGROUND: Although the calcined oyster shell can be used as a calcium-rich adsorbent for phosphate removal, information about it is limited. The purpose of this study was to evaluate the phosphate adsorption characteristics and its mechanism using calcined oyster shells. METHODS AND RESULTS: In this study, calcined oyster shell (C-OS600) was prepared by calcining oyster shells (P-OS) at 600℃ for 20 min. Phosphate adsorption by C-OS600 was performed under various environmental conditions. Phosphate adsorption by C-OS600 occurred rapidly at the beginning of the reaction, and the time to reach equilibrium was less than 1 h. The optimal isotherm and kinetic models for predicting the adsorption of phosphate by C-OS600 were the Langmuir isotherm and pseudo-second order kinetic model, respectively, and the maximum adsorption capacity derived from the Langmuir isotherm was 68.0 mg/g. The adsorption properties of phosphate by C-OS600 were dominantly influenced by the initial pH and C-OS600 dose. In addition, SEM-EDS and FTIR analysis clearly showed a difference in C-OS600 before and after phosphate adsorption, which proved that phosphate was adsorbed on the surface of C-OS600. CONCLUSION: Overall, the calcined oyster shell can be considered as an useful and effective adsorbent to treat wastewater containing phosphate.

Characterization and Adsorption Properties of Red Mud/Fly Ash Based Geopolymers Adsorbent with Calcination Temperature (Red mud/fly ash 기반 geopolymer 흡착제의 소성온도에 따른 특성 및 흡착거동)

  • Jin-Yeong Shin;Han-Seong Kim;Hwa-Yeong Kang;Soon-Do Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.412-420
    • /
    • 2023
  • In this study, red mud/fly ash based geopolymer adsorbents (RFGPA) were prepared with calcination temperatures of 200, 400, and 600 ℃, and the effects of these calcination temperatures on the adsorption of methylene blue (MB) were investigated. In addition, the prepared RFGPA was characterized using X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) spectroscopy, and Brunauer-EmmettTeller (BET) analysis. The results of the adsorption kinetics of MB at RFGPA prepared calcination temperatures indicated that the adsorption equilibrium of MB was reached after about 72 h. From the results of the adsorption isotherm, we verified that the degree of adsorption increased with increasing MB concentrations. In addition, the adsorption amount (Q) of MB decreased with an increase in calcination temperature. The experimental adsorption isotherm data were well fitted to the Freundlich and Sips equations compared to the Langmuir equation. In order to verify the effects of photocatalytic decomposition (C/C0) of MB on Fe2O3 present in prepared RFGPA, the degree of decomposition of MB was examined under dark and visible conditions. Results indicated that the decomposition of MB in visible conditions was about 3.0 times faster than that in dark conditions.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

A Comparative Study on Adsorption Characteristics of PCBs in Transformer Oil Using Various Adsorbents (여러 흡착제를 이용한 변압기 오일 중의 PCBs 흡착특성에 관한 비교연구)

  • Ryoo, Keon Sang;Hong, Yong Pyo;Ahn, Chun Ju
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.692-699
    • /
    • 2012
  • The aim of the present study is to explore the possibility of utilizing loess and fly ash as well as activated carbon for the adsorptive removal of PCBs in transformer oil. Here, we investigated the effect of various factors such as temperature (5, 25, 55), contact time (30 min-3 day) and adsorbent does (1, 2.5, 5, 10 g) in detail. It was found that PCBs adsorption rate from transformer oil by activated carbon is more favored than loess at the equilibrium time of 60 minutes. The equilibrium data for both activated carbon and loess is fitted well to the Freundlich isotherm model. The rate constant and activation energy of PCBs adsorption in transformer oil on each adsorbent was analyzed by fitting a kinetic model at 5, 25 and $55^{\circ}C$. From the thermodynamic parameters, the PCBs adsorption process for transformer oil/activated carbon and loess system is spontaneous and endothermic in nature.

The Influence of Electrolytes on the Dyeing Properties of Congo Red on Cotton Fibers (Congo Red로 염색한 면섬유의 염색성에 미치는 전해질의 영향)

  • Lee, Young-Hee;Park, Joon-Myung;Sung, Woo-Kyung;Kim, Kyung-Hwan
    • Textile Coloration and Finishing
    • /
    • v.3 no.2
    • /
    • pp.34-42
    • /
    • 1991
  • The effects of electrolyte on dyeing properties of cotton fiber with Congo Red have been studied at 90, 70 and $40^{\circ}C$. Each dyeing carried into an infinite bath with $1\times10^{-4}$ mol/l of Congo Red and with various concentration of electrolytes. The results obtained from this study were as follow; 1. The equilibrium adsorption of dye $(C_\infty)$ values decreased with increasing dyeing temperature, $C_\infty$ values increased in the order KCl>NaCl>LiCl. 2. The values of apparent diffusion coefficients $(D_a)$ increased with increasing dyeing temperature, but $D_a$ values decreased in the order KCl$D_a$ values decreased with increasing electrolyte concentration. 4. Effect of electrolytes decreased with increasing dyeing temperature. 5. The values of standard affinities of dyeing $(-\triangle\mu^{\circ})$, the standard heats of dyeing $(-\triangleH^{\circ})$, and the standard entropies $(-\triangleS^{\circ})$, increased in the order KCl>NaCl>LiCl. 6. Equilibrium adsorption isotherm curve were Freundlich type, and in the Equation y=a.x$^{n}$ , the values of a and n increased in the order KCl>NaCl>LiCl. 7. The value of $-\triangle\mu^{\circ}$, $-\triangleH^{\circ}$, and $-\triangleS^{\circ}$, decreased with increasing electrolyte concentration.

  • PDF

Equilibrium, Kinetics and Thermodynamics Studies about Adsorption of Safranin by Granular Activated Carbon (입상 활성탄에 의한 Safranin의 흡착에 관한 평형, 동력학 및 열역학에 관한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.581-586
    • /
    • 2015
  • Adsorption of Safranin using granular activated carbon from aqueous solution was investigated. Batch experiments were carried out as a function of adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were fitted to Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. Based on an estimated Langmuir separation factor, $R_L=0.183{\sim}0.254$ and a Freundlich separation factor, 1/n = 0.518~0.547, this process could be employed as an effective treatment method. Adsorption data were also modeled using the pseudo-first and second-order kinetic equations. It was shown that the pseudo-second-order kinetic equation could best describe the adsorption kinetics. The negative Gibbs free energy (${\Delta}G=-3.688{\sim}-7.220kJ/mol$) and positive enthalpy (${\Delta}H=33.126kJ/mol$) indicated that the adsorption process was spontaneous and endothermic.