DOI QR코드

DOI QR Code

Equilibrium, Kinetics and Thermodynamics Studies about Adsorption of Safranin by Granular Activated Carbon

입상 활성탄에 의한 Safranin의 흡착에 관한 평형, 동력학 및 열역학에 관한 연구

  • Lee, Jong Jib (Division of chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2015.07.24
  • Accepted : 2015.08.17
  • Published : 2015.10.10

Abstract

Adsorption of Safranin using granular activated carbon from aqueous solution was investigated. Batch experiments were carried out as a function of adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were fitted to Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. Based on an estimated Langmuir separation factor, $R_L=0.183{\sim}0.254$ and a Freundlich separation factor, 1/n = 0.518~0.547, this process could be employed as an effective treatment method. Adsorption data were also modeled using the pseudo-first and second-order kinetic equations. It was shown that the pseudo-second-order kinetic equation could best describe the adsorption kinetics. The negative Gibbs free energy (${\Delta}G=-3.688{\sim}-7.220kJ/mol$) and positive enthalpy (${\Delta}H=33.126kJ/mol$) indicated that the adsorption process was spontaneous and endothermic.

입상 활성탄을 사용하여 수용액으로부터 Safranin의 흡착에 대해 조사하였다. 회분식 실험은 흡착제의 양, 초기농도와 접촉시간과 온도를 흡착변수로 사용하여 수행하였다. 흡착평형자료는 Langmuir, Freundlich 및 Dubinin-Radushkevich식을 사용하여 해석한 결과 Freundlich식이 가장 좋은 일치도를 나타냈다. 평가된 Langmuir 분리계수, $R_L=0.183{\sim}0.254$와 Freundlich 분리계수, 1/n = 0.518~0.547로부터 이 흡착공정이 적절한 처리방법이 될 수 있음을 알았다. 흡착속도실험자료를 유사1차 및 유사2차 반응속도식에 적용해 본 결과는 유사2차반응속도식에 잘 맞는 것으로 나타났다. 음수값의 Gibbs 자유에너지(${\Delta}G=-3.688{\sim}-7.220kJ/mol$)와 양수값의 엔탈피(${\Delta}H=33.126kJ/mol$)는 흡착이 자발적이고 흡열공정으로 진행된다는 것을 나타냈다.

Keywords

References

  1. E. A. Clarke and R. Anliker, Organic dyes and pigments handbook of environmental chemistry, anthropogenic compounds, part A, vol. 3, 181, Springer-Verlag, New York (1980).
  2. V. K. Gupta, A. Mittal, R. Jain, M. Mathur, and S. Sikarwar, Adsorption of safranin-T from wastewater using waste materials-activated carbon and activated rice husks, J. Colloid Interf. Sci., 303, 80-86 (2006). https://doi.org/10.1016/j.jcis.2006.07.036
  3. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind & Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  4. M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, and V. K. Gupta, Modeling of competitive ultrasonic assisted removal of the dyes - Methylene blue and Safranin-O using Fe3O4 nanoparticles, Chem. Eng. J., 268, 28-37 (2015). https://doi.org/10.1016/j.cej.2014.12.090
  5. N. K. Rotte, S. Yerramala, J. Boniface, and V. V. S. S. Srikanth, Equilibrium and kinetics of Safranin O dye adsorption on MgO decked multi-layered graphene, Chem. Eng. J., 258, 412-419 (2014). https://doi.org/10.1016/j.cej.2014.07.065
  6. N. Zaghbani, A. Hafiane, and Mahmoud Dhahbi, Removal of Safranin T from wastewater using micellar enhanced ultrafiltration, Desalination, 222, 348-356 (2008). https://doi.org/10.1016/j.desal.2007.01.148
  7. L. Shao, X. Q. Cheng, Ya. Liu, S. Quan, J. Ma, S. Z. Zhao, and K. Y. Wang, Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for safranin O and aniline blue removal, J. Membrane Sci., 430, 96-105 (2013). https://doi.org/10.1016/j.memsci.2012.12.005
  8. K. Mahmoudi, K. Hosni, N. Hamdi, and E. Srasra, Kinetics and equilibrium studies on removal of methylene blue and methyl orange by adsorption onto activated carbon prepared from date pits-A comparative study, Korean J. Chem. Eng., 32(2), 274-283 (2015). https://doi.org/10.1007/s11814-014-0216-y
  9. J. J. Lee, Equilibrium, Kinetics and Thermodynamic parameters studies on metanil yellow dye Adsorption by granular Activated Carbon, Appl. Chem. Eng., 25, 96-102 (2014). https://doi.org/10.14478/ace.2013.1122
  10. M. Ghaedi, H. Hossainian, M. Montazerozohori, A. Shokrollahi, F. Shojaipour, M. Soylak, and M. K. Purkait, A novel acorn based adsorbent for the removal of brilliant green, Desalination, 281, 226-233 (2011). https://doi.org/10.1016/j.desal.2011.07.068
  11. J. Monika, V. Garg, and D K. Kadirvelu, Chromium(VI) removal from aqueous solution, using sunflower stem waste, J. Hazard. Mater., 162, 365-372 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  12. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk, J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031

Cited by

  1. Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Rhodamin-B onto Granular Activated Carbon vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1015
  2. 활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열 vol.28, pp.2, 2015, https://doi.org/10.14478/ace.2016.1132