• Title/Summary/Keyword: equilibrium gas

Search Result 485, Processing Time 0.029 seconds

Performance Analysis of Water Gas Shift Reaction in a Membrane Reactor (막반응기에서의 수성가스전이반응의 성능 분석)

  • Lim, Hankwon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.204-208
    • /
    • 2014
  • This study investigated the effect of hydrogen permeance and selectivity, catalyst amount, $H_2O/CO$ ratio in a feed stream, and Ar sweep gas on the performance of a water gas shift reaction in a membrane reactor. It was observed that a minimum hydrogen selectivity of 100 was needed in a membrane reactor to obtain a hydrogen yield higher than the one at equilibrium and the hydrogen yield enhancement gradually decreased as the hydrogen permeance increased. The CO conversion in a membrane reactor initially increased with the catalyst amount and reached a plateau later for a membrane reactor with a low hydrogen permeance while the high CO conversion independent of a catalyst amount was observed for a membrane reactor with a high hydrogen permeance. For the $H_2O/CO$ ratio in a feed stream higher than 1.5, a hydrogen permeance had little effect on the CO conversion in a membrane reactor and it was found that a minimum Ar molar flow rate of $6.7{\times}10^{-6}mol\;s^{-1}$ was needed to achieve the CO conversion higher than the one at equilibrium in a membrane reactor.

Analysis of a Hydrogen Generation Membrane Reactor (수소 생산용 막반응기의 해석)

  • Kim Hyung Gyu;Suh Jung Chul;Baek Young Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.16-23
    • /
    • 2004
  • A membrane reactor concept, which combines the typical characteristics of chemical reaction with separation process, has been analyzed and simulated in this study. The advantages of the use of a membrane reactor include chemical equilibrium shift towards higher reactant conversion and purer product than the traditional reactors. A membrane reactor model which incorporates a catalytic reaction zone and a separation membrane is proposed. The water-gas shift reaction to produce hydrogen was chosen as a model reaction to be investigated. The membrane reactor is divided into smaller parts by number of n and each part (named cell), which contains both reaction and product separation function is modeled. One of the membrane outlet streams is connected to the next cell, which is repeated up to the last cell. The simulation results can be used for various purposes including decision of optimum operating condition and membrane reactor design.

  • PDF

Pre-Combustion Capture of Carbon Dioxide Using Principles of Gas Hydrate Formation (가스 하이드레이트 형성 원리를 이용한 연소전 탈탄소화 연구)

  • Lee, Hyun-Ju;Lee, Ju-Dong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.650-654
    • /
    • 2008
  • The emission of carbon dioxide from the burning of fossil fuels has been identified as a major contributor to green house emissions and subsequent global warming and climate changes. For these reasons, it is necessary to separate and recover $CO_2$ gas. A new process based on gas hydrate crystallization is proposed for the $CO_2$ separation/recovery of the gas mixture. In this study, gas hydrate from $CO_2/H_2$ gas mixtures was formed in a semi-batch stirred vessel at a constant pressure and temperature. This mixture is of interest to $CO_2$ separation and recovery in Integrated Coal Gasification (IGCC) plants. The impact of tetrahydrofuran (THF) on hydrate formation from the $CO_2/H_2$ was observed. The addition of THF not only reduced the equilibrium formation conditions significantly but also helped ease the formation of hydrates. This study illustrates the concept and provides the basic operations of the separation/recovery of $CO_2$ (pre-combustion capture) from a fuel gas ($CO_2/H_2$) mixture.

Effect of Oxidation Multi-Walled Carbon Nanotubes for Methane Hydrate Formation (산화탄소나노튜브를 이용한 메탄 하이드레이트 형성)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.11-16
    • /
    • 2010
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity and each other from physically-bond at specially temperature and pressure condition. $1m^3$ of methane hydrate can be decomposed into the maximum of $216m^3$ of methane gas under standard condition. If these characteristics of hydrate are utilized in the opposite sense, natural gas can be fixed into water in the form of a hydrate solid. Therefore the use of hydrate is considered to be a great way to transport and store natural gas in large quantity. However, when methane hydrate is formed artificially, the amount of gas that is consumed is relatively low, due to the slow reaction rate between water and methane gas. Therefore for practical purposes in the application, the present investigation focuses on increasing the amount of gas consumed by adding chemically oxidized OMWCNTs to pure water. The results show that when 0.003 wt% of oxidation multi-walled carbon nanotubes was added to pure water, the amount of gas consumed was almost four times more than that of pure water indicating its effect in hydrate formation and the hydrate formation time decreased at alow subcooling temperature.

Review on Performance Analysis Technology of Power Generation Gas Turbine (발전용 가스터빈 성능해석 기술 분석)

  • Kim, Soo Yong;Park, M. R.;Choi, B. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.198-208
    • /
    • 1998
  • For the development of a gas turbine engine, repetitive calculation process to determine design point and off-design performance based on basic design requirements resulted from the market survey is necessary Due attention then, must be given that design process must be carried out within the mechanical limits satisfying conservation laws of mass, work as well as speed equilibrium between the components for maximum performance. It is the purpose of the present study to deal with technical particulars during design point and off-design process of gas turbine engine performance analysis for simple cycle as well as combined cycle.

  • PDF

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

Effect of Gas-Filled Cavity Of! Frequency Response of a Pressure Transducer (기포로 채워진 캐비티가 압력 센서의 주파수 응답 특성에 미치는 영향)

  • Kang, Kwan-Hyoung;Lee, Mu-Yeol;Kim, Young-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.785-790
    • /
    • 2000
  • The resonant frequency of a gas-filled cylindrical Helmholtz resonator in a liquid is obtained analytically. The equation of motion of the resonator is derived by using the condition of equilibrium of forces acting on the mass in the neck of the resonator. The reaction force on the upper side of the cylinder due to the acceleration of external fluid and sound radiation is obtained by using the analytical results for the baffled circular-piston problem. From the frequency response function of the resonator, a formula to predict the resonant frequency of the resonator is derived. It is shown that the resonant frequency of the Helmholtz resonator significantly decreases due to the cushioning effect of gas inside the cavity. Therefore, when a pressure transducer is to be installed in a pin-hole type mounting method, much care should be paid to remove the gas from the cavity.

  • PDF

A comparison of predicted VLE of LNG mixtures containing $H_2S$ by use of Cubic and Noncubic EOS ($H_2S$를 포함하는 LNG 혼합물에 대한 Cubic과 Noncubic 상태방정식의 예측 비교)

  • Choi Eunjoo;Lee Taejong
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.1-5
    • /
    • 2000
  • Cubic and non-cubic equations of state are used to calculate the vapor-liquid equilibrium(VLE) compositions for liquified natural gas(LNG) containing hydrogen sulfide. Modified Benedict-Web-Robin EOS is chosen as a non-cubic equation of state while Peng-Robinson, Soave-Redlich-Kwong EOS are used for a cubic EOS. Modified Benedict-Web-Robin EOS. showed better predictability than the cubic EOS used for the systems $H_2S/CH_4,\;H_2S/iC_4H_{10},\;H_2S/N_2$. specially for liquid composition.

  • PDF

Formation of Ti-B-N-C Ceramic Composite Materials via a Gas-Solid Phase Reaction

  • Yoon, Su-Jong
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Phase mixtures of Titanium boride, nitride, and carbide powder were produced by the reduction of a mixture of titanium and boron oxides with carbon via a gas-solid phase reaction. Boron oxides produce a vapour phase or decompose to a metal sub-oxide gaseous species when reduced at elevated temperature. The mechanism of BO sub-oxide gas formation from $B_2O_3$ and its subsequent reduction to titanium diboride for the production of uniform size hexagonal platelets is explained. These gaseous phases are critical for the formation of boride, nitride and carbide ceramics. For the production of ceramic phase composite microstructures, the nitrogen partial pressure was the most critical factor. Some calculated equilibrium phase fields has been verified experimentally. The theoretical approach therefore identifies conditions for the formation of phase mixtures. The thermodynamic and kinetic factors that govern the phase constituents are also discussed.