• Title/Summary/Keyword: equation of motion

Search Result 1,826, Processing Time 0.026 seconds

Study on Application Program Preparation of the High Tide Prediction for the Electronic Computer (전지계산기에 의한 해일을 예측하는 수치계산 Program 개발에 관한 연구)

  • 김치홍
    • Water for future
    • /
    • v.13 no.2
    • /
    • pp.55-62
    • /
    • 1980
  • It is very important thing that the high tide prediction along the sea-side before the typhoon landing. In Korea, every year somewhere of the near sea-shore has been suffered much damages by the high tide during typhoon season, and the governement has to spend much of the reserved budget to rescue and reconstruction the damaged facilities in the seas-shore area. In this point of view, as none of the high tide prediction program in Korea, the author aims to develope this kind of study, so that this application program may dedicate the concerned organizations such as Ministry of Construction, Commerce and Industry, and Agriculture Forestry and Fishery, etc. Due to developed the software of high speed electronic computer in recently, the complicated numerical analysis can be solve very conviniently. So the author tries to prepare the high tide predecation program using the equation of motion and continous in the fluide dynamics by the constant time and distance of the differentation method. The input data for this program are the weather chart and depth data of the mattered bay, inner-sea or outer-sea. This program has been applied on the Pohan inner harbor as a model and find ort the program computation results is coincide with the observed values of "FRAN" typhoon in 1976 at the Pohang harbor.ng harbor.

  • PDF

Numerical analysis of 2-DOF motions of an ocean floater with sloshing effects (슬로싱 영향을 동반한 해양 부유체의 2자유도 거동 수치해석)

  • Kim, HyunJong;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.617-622
    • /
    • 2013
  • The sloshing of liquid inside an ocean floater is caused by disturbances due to waves. For the analysis of sloshing impact within the floater and that of waves on the floater, the coupled analysis method is used. The Stokes $5^{th}$ order non-linear wave theory equations were adapted for wave making. Furthermore, Navier-Stokes equation and Shear-Stress Transport (SST) turbulent model were used to Computational Fluid dynamics, where the ocean floater motions are considered the heave and the pitch motion. The results obtained confirms the mutual relationship between the rigid body motions and that of sloshing, where the sloshing behaviour within the floater is characterized by the wave effects on the floater.

Vibration of Steel Composite Railway Bridges under High Speed Train (고속열차하중 하의 강합성형 철도교의 진동)

  • Chang, Sung Pil;Kwark, Jong Won;Ha, Sang Gil;Kim, Sung Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.577-587
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two I-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs are fully connected with steel girders, the offset between slabs and girders is modeled using constraint equation. The track system is modeled using beams on elastic foundation theory. And, the TGV train model is developed in 2-dimension considering bouncing and pitching motion. And braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies on the variation of natural frequency of bridge, speed parameter, vehicle modeling method, braking action of train, etc are performed.

  • PDF

Design Optimization Method of Inertial Parameters of Serial Manipulators for Improving the Energy Efficiency (에너지 효율 향상을 위한 직렬형 머니퓰레이터의 관성 파라미터 설계 최적화 방법)

  • Hwang, Soon-Woong;Kim, Hyeon-Guk;Choi, Youn-Sung;Shin, Kyoo-Sik;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.395-402
    • /
    • 2016
  • This paper presents a design methodology for improving the energy efficiency by considering the inertial properties of serial manipulators. This method employed is to put the inertia matrix, which has a critical effect on the equation of motion, into the constraints of the optimization problem. Through the optimization process, we propose a design algorithm that can double-check whether the optimized parameters satisfy the required performance or not by using an auxiliary index associated with the inertia and energy. Using this design algorithm, we were able to improve the energy efficiency by minimizing the torque. We applied this method to a 3 degrees of freedom serial manipulator and simulated it.

Study on the Enhancement of the Functionality of Construction Graphical Simulation System (건설 그래픽 시뮬레이션 시스템의 기능개선에 관한 연구)

  • Kim Yeong-Hwan;Seo Jong-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.543-547
    • /
    • 2004
  • Visualization of construction process simulation and physical modeling were considered to overcome the limitations of current graphical simulation. The output of discrete-event simulation programs which are the most common mathematical statistical simulation tool for construction processes were analyzed for the visualization of earthmoving process that dealing with objects without fixed. Object-oriented models for equipment, material and work environments were devised to effectively visualize the numerical simulation results of the working time, the queuing time as well as the amount resources etc. The oscillation of the crane's cable and the lifted material that should be considered to rationally modeled and simulated by construction graphical simulation. The derived equation of motion was solved by numerical analysis procedure. Then obtained results was used for physical modeling.

  • PDF

Nonlinear Dynamic Analysis of Space Steel Frames (공간 강뼈대 구조물의 비선헝 동적 해석)

  • Kim Seung-Eock;Cuong Ngo-Huu;Lee Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.395-404
    • /
    • 2005
  • This paper presents a reliable numerical procedure for nonlinear time-history analysis of space steel frames subjected to dynamic loads. Geometric nonlinearities of member (P-$\delta$) and frame (P-$\Delta$) are taken into account by the use of stability functions in framed stiffness matrix formulation. The gradual yielding along the member length and over the cross section is included by using a tangent modulus concept and a softening plastic hinge model based on the New-Orbison yield surface. A computer program utilizing the average acceleration method for the integration scheme is developed to numerically solve the equation of motion of framed structure formulated in an incremental form. The results of several numerical examples are compared with those derived from using beam element model of ABAQUS program to illustrate the accuracy and the computational efficiency of the proposed procedure.

Dynamic Behavior Analysis of Floating Offshore Wind Turbine Including Flexible Effects of Tower and Blade (타워와 블레이드의 탄성효과를 고려한 부유식 해상풍력발전기의 동적거동해석)

  • Jung, Hye-Young;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.905-911
    • /
    • 2012
  • To establish a floating offshore wind turbine simulation model, a tension leg platform is added to an onshore wind turbine. The wind load is calculated by using meteorological administration data and a power law that defines the wind velocity according to the height from the sea surface. The wind load is applied to the blade and wind tower at a regular distance. The relative Morison equation is employed to generate the wave load. The rated rotor speed (18 rpm) is applied to the hub as a motion. The dynamic behavior of a 2-MW floating offshore wind turbine subjected to the wave excitation and wind load is analyzed. The flexible effects of the wind tower and the blade are analyzed. The flexible model of the wind tower and blade is established to examine the natural frequency of the TLP-type offshore wind turbine. To study the effect of the flexible tower and blade on the floating offshore wind turbine, we modeled the flexible tower model and flexible tower-blade model and compared it with a rigid model.

A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario (위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발)

  • Shin, Myoungin;Lee, Jinho;Hong, Wooyoung;Kim, Woo Shik;Bae, Hoseuk;Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.21-33
    • /
    • 2020
  • This study develops a simulator for determining the sonar sensor configuration of unmanned underwater vehicles (UUVs) based on a scenario, in order for UUVs to conduct an effective anti-submarine warfare (ASW). First, we analyze the missions and operational concepts of UUVs in the field of ASW, and then select a Hold-at-Risk scenario as the one with the highest priority. Next, for modeling the components of a simulator, the motion, acoustic characteristic, and environment condition of the platforms (UUV and target submarine) are specified. Especially, based on the beam pattern of each sonar configuration considered in this paper, the passive sonar equation is used to verify target detection, and we further estimate the azimuth and elevation of the target using amplitude and phase of the received signal, respectively. The simulation results show the performance tendency depending on the sonar sensor configurations of a UUV, and the simulator provides a high applicability under various scenarios.

Stability Analysis of Floating Ring Bearing Supported Turbocharger (플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

A study on the excavation rate of directional drilling using finite element method (유한요소법을 이용한 방향성 시추의 굴진율 연구)

  • Jung, Tae Joon;Shin, Younggy
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.42-46
    • /
    • 2021
  • The equation of motion of the drill string along the excavation trajectory was analyzed using the Lagrangian approach together with the finite element method (FEM). A drill string of circular cross section is constructed by combining a plurality of circular axes each having 12 degrees of freedom (DOF). FEM analysis can observe the vibration and dynamic changes of the entire drill string, and it is easy to apply comprehensive boundary conditions to reproduce the simulation of a realistic drill string. In this study, the constructed FEM motel was simulated. In order to apply the FEM program to the actual drill trajectory, the dynamic analysis of the curved beam was verified by comparison with the actual values. The dynamic change over time was observed.