• Title/Summary/Keyword: equal order element

Search Result 76, Processing Time 0.031 seconds

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

Influence of moisture content on main mechanical properties of expansive soil and deformation of non-equal-length double-row piles: A case study

  • Wei, Meng;Liao, Fengfan;Zhou, Kerui;Yan, Shichun;Liu, Jianguo;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • The mechanical properties of expansive soil are very unstable, highly sensitive to water, and thus easy to cause major engineering accidents. In this paper, the expansive soil foundation pit project of the East Huada Square in the eastern suburb of Chengdu was studied, the moisture content of the expansive soil was considered as an important factor that affecting the mechanics properties of expansive soil and the stability of the non-equal-length double-row piles in the foundation pit support. Three groups of direct shear tests were carried out and the quantitative relationships between the moisture content and shear strength τ, cohesion c, internal friction angle φ were obtained. The effect of cohesion and internal friction angle on the maximum displacement and the maximum bending moment of piles were analyzed by the finite element software MIDAS/GTS (Geotechnical and Tunnel Analysis System). Results show that the higher the moisture content, the smaller the matrix suction, and the smaller the shear strength; the cohesion and the internal friction angle are exponentially related to the moisture content, and both are negatively correlated. The maximum displacement and the maximum bending moment of the non-equal length double-row piles decrease with the increase of the cohesion and the internal friction angle. When the cohesion is greater than 33 kPa or the internal friction angle is greater than 25.5°, the maximum displacement and maximum bending moment of the piles are relatively small, however, once crossing the points (the corresponding moisture content value is 24.4%), the maximum displacement and the maximum bending moment will increase significantly. Therefore, in order to ensure the stability and safety of the foundation pit support structure of the East Huada Square, the moisture content of the expansive soil should not exceed 24.4%.

Finite element method adopting isoparametric formulation of the quadrilateral elements (등매개변수 사변형요소를 적용한 유한요소해석법)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.205-212
    • /
    • 2018
  • In order to overcome shortcomings of commercial analysis program for solving certain geotechnical problems, finite element method adopting isoparametric quadrilateral element was selected as a tool for analyzing soil behavior and calculating process was programmed. Two examples were considered in order to verify reliability of the developed program. One of the two examples is the case of acting isotropic confining pressure on finite element and the other is the case of acting shear stress on the sides of the finite element. Isoparametric quadrilateral element was considered as the finite element and displacements in the element can be expressed by node displacements and shape functions in the considered element. Calculating process for determining strain which is defined by derivatives using global coordinates was coded using the Jacobian and the natural coordinates. Four point Gauss rule was adopted to convert double integral which defines stiffness of the element into numerical integration. As a result of executing analysis of the finite element under isotropic confining pressure, calculated stress corresponding to four Gauss points and center of the element were equal to the confining pressure. In addition, according to the analyzed results for the element under shear stress, horizontal stresses and vertical stresses were varied with positions in the element and the magnitudes and distribution pattern of the stresses were thought to be rational.

Finite Element Analysis of Fatigue Crack Closure under Plane Strain State (평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가)

  • Lee, Hak-Joo;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

A Study for Mutual Interference between Symmetric Circular Inclusion and Crack in Finite Width Plate by Boundary Element Method (경계요소법에 의한 유한폭 판재내의 대칭 원형함유물과 균열의 상호간섭에 대한 연구)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.137-145
    • /
    • 1997
  • A two-dimensional program for the analysis of bimaterial inclusion has been developed using the bound- ary element method. In order to study the effects of circular inclusion on the stress field of the crack tip, numerical analysis was performed for the straight crack of finite length around the symmetric circular inclusion whose modulus of elasticity was different from that of the matrix material. In the case of inclusion whose stiffness was smaller than that of the matrix material, the stress intensity factor was found to increase as the crack enamated. The stress intensity factor was uninfluenced from the radial change in inclusion and remained constant for the stiffness equivalent to the matrix materials, where as it decreased for the inclusion with larger stiffness. For the vareation in the distance of the inclusion, a small increase in the stress intensity factor was observed for the case with small or equal stiffness compared with the matrix materials. The inclusion with larger stiffness showed a gradual decrease in the strss intensity factor as the crack emanated.

  • PDF

Step-Up Asymmetrical Nine Phase Delta-Connected Transformer for HVDC Transmission

  • Ammar, Arafet Ben;Ammar, Faouzi Ben
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1920-1929
    • /
    • 2018
  • In order to provide a source for nine phases suitable for 18-pulse ac to dc power, this paper proposes a new structure for a step-up asymmetrical delta-connected transformer for converting three-phase ac power to nine-phase ac power. The design allows for symmetry between the nine output voltages to improve the power quality of the supply current and to minimize the THD. The results show that this new structure proves the equality between the output voltages with $40^{\circ}-{\alpha}$ and $40^{\circ}+{\alpha}$ phase shifting and produces symmetrical output currents. This result in the elimination of harmonics in the network current and provides a simulated THD that is equal to 5.12 %. An experimental prototype of the step-up asymmetrical delta-autotransformer is developed in the laboratory and the obtained results give a network current with a THD that is equal to 5.35%. Furthermore, a finite element analysis with a 3D magnetic field model is made based on the dimensions of the 4kVA, 400 V laboratory prototype three-phase with three-limb delta-autotransformer with a six-stacked-core in each limb. The magnetic distribution flux, field intensity and magnetic energy are carried out under open-circuit operation or load-loss.

A fast scalar multiplication on elliptic curves (타원곡선에서 스칼라 곱의 고속연산)

  • 박영호;한동국;오상호;이상진;임종인;주학수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.3-10
    • /
    • 2002
  • For efficient implementation of scalar multiplication in Kobliz elliptic curves, Frobenius endomorphism is useful. Instead of binary expansion of scalar, using Frobenius expansion of scalar we can speed up scalar multiplication and so fast scalar multiplication is closely related to the expansion length of integral multipliers. In this paper we propose a new idea to reduce the length of Frobenius expansion of integral multipliers of scalar multiplication, which makes speed up scalar multiplication. By using the element whose norm is equal to a prime instead of that whose norm is equal to the order of a given elliptic curve we optimize the length of the Frobenius expansion. It can reduce more the length of the Frobenius expansion than that of Solinas, Smart.

The effects of stiffener configuration on stiffened T-stubs

  • Ozkılic, Yasin Onuralp
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • The stiffeners, also known as ribs, are utilized to increase the resistance of T-stubs. The author's previous studies showed that stiffeners can increase plastic capacity by an average of 1.71 times. A combined experimental and numerical study was undertaken to examine the effects of the stiffener configuration on the behavior of T-stubs. A total of 20 stiffened T-stubs where the shape and angle of stiffeners were considered as the main parameters were tested under monotonic loading. Rectangular, triangular and AISC types of stiffener were tested under monotonic loading. The experimental results indicated that when the height of the stiffener is equal to or higher than the length of the stiffener, the shape of the stiffener does not have an influence on the behavior. A numerical study using the finite element tool ABAQUS was carried out in order to further investigate the effects of the stiffener shapes. In this case, the height is considered less than the length of the stiffener. Moreover, the shape of the stiffeners was investigated with the different thicknesses of the stiffener. The simulation findings revealed that when the height of the stiffener is less than the length of the stiffener, the shape of the stiffener significantly affects the plastic capacity. Based on the numerical and experimental results, it is recommended to use the triangular shape of the stiffener when height is equal to or higher than the length of the stiffener while it is recommended to utilize the rectangular shape of the stiffener when height is less than the length of the stiffener.

Feasibility Study of Remote Field Eddy Current Testing for Nonmagnetic Steam Generator Tubes (비자성 증기발생기 전열관의 원격장와전류 탐상 가능성 연구)

  • Shin, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.518-525
    • /
    • 2001
  • As steam generator (SG) tubes have aged, new and subtle flaws have appeared. Most of them start growing from outside the tubes. Since signals from outer diameter (OD) defects are very weak compared to those from inner diameter (ID) defects in the conventional eddy current testing due to skin effect, this paper studies the feasibility of using remote field eddy current (RFEC) technique, which has shown equal sensitivity to ID and OD defects in the ferromagnetic pipe inspection. Finite element modeling studies show that the operating frequency needs to be increased up to a few hundred kHz in order for RFEC effects to occur in the nonmagnetic SG tube. The proper distance between exciter and sensor coils is also found to be about 1.5 OD, which is half the distance used in the ferromagnetic pipe inspection. Defect signals obtained by the designed RFEC probe show equal sensitivity to ID and OD defects and the existence of linear relationship between defect depth and phase signal strength. These results tell us that RFEC inspection is feasible even in nonmagnetic steam generator tubes.

  • PDF

An Analysis on Problem Solving Ability of 3rd Grade Types of Multiplication and Division Word Problem (곱셈과 나눗셈 문장제 유형에 따른 문제해결능력)

  • Lim, Ja Sun;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.501-525
    • /
    • 2015
  • This study analyzes arithmetic word problem of multiplication and division in the mathematics textbooks and workbooks of 3rd grade in elementary school according to 2009 revised curriculum. And we analyzes type of the problem solving ability which 4th graders prefer in the course of arithmetic word problem solving and the problem solving ability as per the type in order to seek efficient teaching methods on arithmetic word problem solving of students. First, in the mathematics textbook and workbook of 3rd grade, arithmetic word problem of multiplication and division suggested various things such as thought opening, activities, finish, and let's check. As per the semantic element, multiplication was classified into 5 types of cumulated addition of same number, rate, comparison, arrayal and combination while division was classified into 2 types of division into equal parts and division by equal part. According to result of analysis, the type of cumulated addition of same number was the most one for multiplication while 2 types of division into equal parts and division by equal part were evenly spread in division. Second, according to 1st test result of arithmetic word problem solving ability in the element of arithmetic operation meaning, 4th grade showed type of cumulated addition of same number as the highest correct answer ratio for multiplication. As for division, 4th grade showed 90% correct answer ratio in 4 questionnaires out of 5 questionnaires. And 2nd test showed arithmetic word problem solving ability in the element of arithmetic operation construction, as for multiplication and division, correct answer ratio was higher in the case that 4th grade students did not know the result than the case they did not know changed amount or initial amount. This was because the case of asking the result was suggested in the mathematics textbook and workbook and therefore, it was difficult for students to understand such questions as changed amount or initial amount which they did not see frequently. Therefore, it is required for students to experience more varied types of problems so that they can more easily recognize problems seen from a textbook and then, improve their understanding of problems and problem solving ability.