• 제목/요약/키워드: epoxy-based materials

검색결과 323건 처리시간 0.024초

평직 및 주자직 복합재료의 탄성계수 예측 (Prediction of engineering constants for plain and 8-hardness satin woven composites)

  • 변준형
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1757-1764
    • /
    • 1997
  • The geometric and elastic models based on the unit cell have been proposed to predict the geometric characteristics and the engineering constants of plain and satin woven composites. In the geometric model, length and inclined angle of the yarn crimp and the fiber volume fraction of woven composites have been predicted. In the elastic model, the coordinate transformation has been utilized to transform the elastic constants of the yarn crimp to those of woven composites, and the effective elastic constants have been determined from the volume averaging of the constituent materials. Good correlations between the model predictions and the experimental results of carbon/epoxy and glass/epoxy woven composites have been observed. Based on the model, the effect of various geometric parameters and materials on the three-dimensional elastic properties of woven composites can be identified.

나노 SiC 입자의 형상에 따른 탄소섬유 강화 에폭시 복합재료의 기계적 및 계면 물성 변화 관찰 (Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding Nano SiC Fillers)

  • 권동준;왕작가;김제준;장기욱;박종만
    • 접착 및 계면
    • /
    • 제14권2호
    • /
    • pp.75-81
    • /
    • 2013
  • SiC 나노입자를 이용하여 에폭시 복합재료를 제조할 수 있다. SiC 형상에 따른 영향으로 복합재료의 계면 물성이 변화된다. SiC의 형상에 따른 계면 상태의 변화를 관찰하기 위해 베타 형태, 위스커 형태의 SiC 나노입자를 사용하였다. 나노입자에 대한 분산도를 평가하기 위해 커패시턴스를 이용한 분산도 평가방법을 활용하였다. FE-SEM을 이용하여 SiC 나노입자의 활용에 따른 나노복합재료의 파단면을 관찰하여, 그 강화 효과를 비교 분석하였다. 탄소섬유와 SiC 나노입자가 함유된 에폭시를 이용한 복합재료에 계면 물성을 비교하기 위해 층간전단강도 평가법과 계면전단강도 평가법을 이용하였다. 복합재료의 계면 물성을 강화하기 위해서는 베타 형태의 SiC 나노입자를 활용할 경우가 위스커 입자를 이용한 경우보다 높은 계면 강도를 나타냈다.

Comparative study of Metallic and Polymer Composite Shells for Underwater Vessels Using FEA

  • Govindaraj, Moorthy;Narayanarao, Narasimha Murthy Heddale;Munishaiah, Krishna;Nagappa, Raghavendra
    • International Journal of Ocean System Engineering
    • /
    • 제3권3호
    • /
    • pp.136-141
    • /
    • 2013
  • The present research was aimed at comparing performance of metallic and polymer composite shells of a typical underwater vessel of length and inner diameter of 1650 mm and 350 mm respectively, based on the critical buckling pressure for operating depth of 1000 m using ANSYS. High strength steel, aluminium alloy, titanium alloy, glass / epoxy and carbon / epoxy materials were examined. The results indicated weight savings of 46 % in carbon/epoxy and 31 % in glass / epoxy when compared with high strength steel, based on the thickness of the shell for sustaining 10 MPa buckling pressure.

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.139-156
    • /
    • 2008
  • This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

Indoor and outdoor pullout tests for retrofit anchors in low strength concrete

  • Cavunt, Derya;Cavunt, Yavuz S.;Ilki, Alper
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.951-968
    • /
    • 2016
  • In this study, pullout capacities of post-installed deformed bars anchored in low strength concrete using different bonding materials are investigated experimentally. The experimental study was conducted under outdoor and indoor conditions; on the beams of an actual reinforced concrete building and on concrete bases constructed at Istanbul Technical University (ITU). Ready-mixed cement based anchorage mortar with modified polymers (M1), ordinary cement with modified polymer admixture (M2), and epoxy based anchorage mortar with two components (E) were used as bonding material. Furthermore, test results are compared with the predictions of current analytical models. Findings of the study showed that properly designed cement based mortars can be efficiently used for anchoring deformed bars in low quality concrete. It is important to note that the cost of cement based mortar is much lower with respect to conventional epoxy based anchorage materials.

산화 그래핀 나노플레이트릿을 혼입한 에폭시 도료의 역학적 특성 (Mechanical Properties of Epoxy Paints Containing Oxidized Graphene Nanoplatelet)

  • 서원우;김규용;윤민호;황의철;백재욱;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.153-154
    • /
    • 2017
  • Graphene is a nanomaterial and is known to have very high mechanical strength, thermal and electrical properties. However, graphene is known to be difficult to disperse among carbon-based materials due to van der Waals force. In this study, to solve the dispersion problem of graphene nanoplatelet, oxidized graphene nanoplatelet was prepared by oxidizing GNP in nitric acid. The prepared GO was dispersed in ethanol and distilled water before incorporation into the epoxy paint to confirm dispersibility. In addition, GNP/Epoxy and GO/Epoxy tensile specimens were prepared by mixing GNP and GO at 0.1, 0.3, 0.5 and 1.0 wt.% In epoxy coatings and tensile stress-strain characteristics were investigated.

  • PDF

에폭시/PMR-15 폴리이미드 블렌드계의 경화동력학 및 열안정성에 관한 연구 (Studies on Cure Behavior and Thermal Stability of Epoxy/PMR-15 Polyimide Blend System)

  • Lee, Jae-Rock;Lee, Hwa-Young;Park, Soo-Jin
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.265-268
    • /
    • 2002
  • In this work, the blend system of epoxy and PMR-15 polyimide is investigated in terms of the cure behaviors and thermal stabilities. The cure behaviors are studied in DSC measurements and thermal stabilities are also carried out by TGA analysis. DDM (4, 4'-diamino diphenyl methane) is used as curing agent for EP and the content of PMR-15 is varied within 0, 5, 10, 35, and 20 phr to neat EP. As a result, the cure activation energy ($E_a$) is increased at 10 phr of PMR-15, compared with that of neat EP. From the TGA results of EP/PMR-15 blend system, the thermal stabilities based in the initial decomposed temperature (IDT) and integral procedural decomposition temperature (IPDT) are increased with increasing the PMR-15 content. The fracture toughness, measured in the context of critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$), shows a similar behavior with $E_a$. This result is probably due to the crosslinking developed by the interactions between intermolecules in the polymer chains.

  • PDF

카르복실산계 환원제를 통한 저융점 솔더입자가 포함된 이방성 전도성 접착제의 젖음 특성 향상 연구 (Enhancement of Wetting Characteristics for Anisotropic Conductive Adhesive with Low Melting Point Solder via Carboxylic Acid-based Novel Reductants)

  • 김효미;김주헌
    • 폴리머
    • /
    • 제34권1호
    • /
    • pp.52-57
    • /
    • 2010
  • 고 신뢰도와 높은 물성을 갖는 이방성 전도성접착제(anisotropic conductive adhesive, ACA)용 레진 개발을 위하여, 환원특성을 갖는 카르복실산을 포함한 bisphenol F계열의 에폭시 레진에 저융점 솔더입자(low melting point alloys, LMPA)를 분산시켜 제조하였다. LMPA의 융점에서의 에폭시 레진의 경화특성 및 온도에 따른 유변학 특성을 동적 시차 주사 열량계(differential scanning calorimeter, DSC)와 레오미터(rheometer)로 측정하여 최적화된 ACA 접합 공정을 설계하였다. 접합 공정시 LMPA 표면에 생성되는 산화막을 제거하여 높은 전기전도도와 안정적인 전기적 특성을 얻을 수 있도록 세가지 종류의 카르복실산을 환원제로 사용하여 각각의 젖음(wetting) 특성을 확인하였다. 부틸 카르복실산은 $28^{\circ}$의 낮은 젖음각을 나타내었으나, 경화반응 중 다량의 기포가 발생하는 문제가 있었다. 그러나, 이관능성 카르복실산(1,3-bis(2-carboxypropyl)tetramethyl disaoxane(2-CTMS)) 및 1,3-bis(3-carboxypropyl)tetramethyl disiloxane(3-CTMS))의 경우, 기포의 발생 없이 각각 $18^{\circ}$$20.3^{\circ}$의 매우 우수한 젖음 특성을 보였다.

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.