• Title/Summary/Keyword: epoxy molding

Search Result 188, Processing Time 0.023 seconds

Failure Paths Analyses of the Leadframe/EMC System

  • Lee, H.Y.;Kim, S.R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • Copper-based leadframe sheets were oxidized in a black-oxide forming solution, and molded with epoxy molding compound (EMC) to form sandwiched double-cantilever beam (SDCB) specimens. The adhesion strength of leadframe/EMC interface was measured in terms of fracture toughness by using SDCB specimens and the fracture surfaces were analyzed by various equipments such as glancing-angle XRD, AFM, and SEM. Results showed that three types of failure paths, which were closely related to the surface condition of leadframes before molding.

  • PDF

A Study on Co-Injection Resin Transfer Molding

  • Gonzalez, Alfredo;Lee, Doh-Hoon;Lee, Woo-Il;Um, Moon-Kwang;Byun, Joon-Hyung;Kim, Young-Min;Chung, Seung-Hwang;Lee, Byoung-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.111-116
    • /
    • 2005
  • In this study the compatibility of Epoxy resin with Phenolic using three different separation layer techniques was investigated; some important process variables such as pressure, flow front and deformation were monitored in order to get a better understanding of the process.

  • PDF

The analysis of the single transformer by using F.E.M (F.E.M.을 이용한 단상 변압기의 전자력 해석)

  • Lee, Hyun-Jin;Huh, Chang-Su;Jeong, Jung-Il;Cho, Han-Goo;Park, Yeong-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.855-858
    • /
    • 2001
  • The single transformer appeared the electro-magnetic force must be constructed to support it. it must construct the single transformer to supporting the electro-magnetic force appeared by the cut-off current. the problem is that the electro-magnetic occurs the modification of the single transformer and an serious accident. In the case of the molding-transformer, the part of the molding cast used in the construction occurs the crack, because of the strong force. therefore, in this paper, the molding material used in the molding-transformer is settled by comparing the results from commercial soft ware of F.E.M and a out-equipment circuit.

  • PDF

Evaluation of Insulating Reliability in Epoxy Composites using Dielectric Breakdown Data (절연 파괴 데이터를 이용한 에폭시 복합체의 절연 신뢰도 평가)

  • Park, Geon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.114-118
    • /
    • 2005
  • In this study, the DC dielectric breakdown of epoxy composites used for molding material was experimented and then its data were simulated by Weibull distribution equation. From the analysis of Weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5[kV/mm].

  • PDF

The Magnetic Properties of Amorphous Molding Cores using for Ballast (안정기용 비정질 함침코어의 자기적 특성)

  • Kim, B.G.;Jeong, S.J.;Kim, K.U.;Song, J.S.;Song, Y.S.;Kim, B.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1666-1669
    • /
    • 1996
  • To produce low loss amorphous molding cores which are used as choke cores in high efficiency electronic ballast for Metal Halide Lamp, the magnetic properties of amorphous molding cores were investigated with the various fabrication methods. The results are as follows : (1) The total weight of molding core gradually increased as molding time increases. (2) The magnetic properties($B_{10}$, $B_r$, $B_t/B_s$, $H_c$, $W_c$) of molding core drastically deteriorated. This is presumably due to the compressive stress imposed on amorphous core occurred during epoxy curing treatment. (3) Two step annealing process(curing+field annealing) was more or less effective to recover the damaged properties.

  • PDF

Volume Resistivity Characteristics of Epoxy Resin using Nanocomposites (나노 컴퍼지트 에폭시 절연재료의 체적 고유저항 특성)

  • Choi, Hyun-Min;Kim, Joung-Sik;Kim, Won-Jong;Park, Young-Ha;Kim, Gwi-Yeol;Shin, Jong-Yeol;Lee, Jong-Yong;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.387-387
    • /
    • 2009
  • In the study the volume resistivity Characteristics of epoxy resin using nanocomposites, nano-comosites are made from insulating material epoxy resin using for power transformer equipment and molding several devices as changing amount of addition of diameter 12 [nm] $SiO_2$, we measured volume resistivity of nano-composites by High Resistance Meter(4329A). As the result of measurement, we have seen the epoxy resin using 1.6 [wt%] nanocomposites was the highest measured at the volume resistivity, and using 0.4 [wt%] nanocomposites was highest stabilized than others according to variable temperature properties.

  • PDF

Comparison of fabrication cost of composite bipolar plates for PEM fuel cell: compression molding and machining (PEM 연료전지용 복합재 분리판의 제작비용 비교: 압축성형과 기계식 가공)

  • Lee, Hee-Sub;Chu, Won-Shik;Kang, Yun-Cheol;Kang, Hyuk-Jin;Ahn, Sung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.105-108
    • /
    • 2006
  • The fuel cell is one of the promising environment-friendly energy sources for the next generation. The fuel cell provides good energy efficiency above 40% without pollution or noise. Different fuel cell types are usually distinguished by the kind of electrolyte. Among these, the proton exchange membrane fuel cell (PEMFC) has advantages of high power density. low operating temperature, relatively quick start-up, and rapid response to varying loads. The bipolar plate is a major component of the PEM fuel cell stack, and it takes a large portion of stack volume, weight and cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding and by machining. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. Flow channels were fabricated by compression molding with design of experiments (DOE) to evaluate moldability. The cost for compression molding of graphite-composite bipolar plate was compared with machining cost to make the same bipolar plate.

  • PDF

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드변압기의 덕트에 따른 열해석 특성 연구)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1138
    • /
    • 2003
  • The transformer is major equipment in power receiving and substation facilities. Necessary conditions required for the transformer are compactness, lightness, high reliability, economic advantages, and easy maintenance. The pole-mount transformer installed in distribution system is acting direct role in supply of electric power and it is electric power device should drive for long term. Most of modem transformer are oil-filled transformer and accident is happening considerable. The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. One body molding transformer needs some cooling method because heat radiation between each winding is difficult. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

  • PDF

Property Evaluation of Epoxy Resin based Aramid and Carbon Fiber Composite Materials (에폭시 수지 적용 아라미드 및 탄소섬유 복합재료의 물성연구)

  • Seo, Dae-Kyung;Ha, Na Ra;Lee, Jang-Hun;Park, Hyun-Gyu;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, super fiber reinforced composite materials are widely used in many industries due to high mechanical properties. In this study, 2 different types of composite materials were manufactured in order to compare their mechanical properties. Carbon and Aramid fibers were used for reinforcement materials and Bisphenol-A type epoxy resin was for matrix. Two kinds of fiber-reinforced materials were manufactured by RIM(Resin Injection Molding) method. Before manufacturing composite materials, the optimal manufacturing and curing process condition were established and the ratio of reinforcement to epoxy resin was discussed. FT-IR analysis was conducted to clarify the structure of epoxy resin. Thermal and mechanical property test were also carried out. The cross-section of composite materials was observed using a scanning electron microscope(SEM).

Novel thermoplastic toughening agents in epoxy matrix for vacuum infusion process manufactured composites

  • Bae, Jin-Seok;Bae, Jihye;Woo, Heeju;Lee, Bumjae;Jeong, Euigyung
    • Carbon letters
    • /
    • v.25
    • /
    • pp.43-49
    • /
    • 2018
  • This study suggests the novel thermoplastic toughening agent, which can be applied in the monomer forms without increasing the viscosity of the epoxy resin and polymerized during the resin curing. The diazide (p-BAB) and dialkyne (SPB) compounds are synthesized and mixed with the epoxy resin and the carbon fiber reinforced epoxy composites are prepared using vacuum infusion process (VIP). Then, flexural and drop weight tests are performed to evaluate the improvement in the toughness of the prepared composites to investigate the potential of the novel toughening agent. When 10 phr of p-BAB and SPB is added, the flexural properties are improved, maintaining the modulus as well as the toughness is improved. Even with a small amount of polytriazolesulfone polymerized, due to the filtering effect of the solid SPB by the layered carbon fabrics during the VIP, the toughening and strengthening effect were observed from the novel toughening agent, which could be added in monomer forms, p-BAB and SPB. This suggests that the novel toughening agent has a potential to be used for the composites prepared from viscosity sensitive process, such as resin transfer molding and VIP.