• Title/Summary/Keyword: epoxy bonding

Search Result 253, Processing Time 0.026 seconds

Flexural Behavior of Hybrid Fiber Reinforcement Strengthened RC Beams (하이브리드 섬유보강재로 보강된 철근콘크리트 보의 휨거동)

  • Yi, Seong-Tae;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.79-86
    • /
    • 2010
  • This study was performed to evaluate the flexural behavior of Hybrid fiber sheet (HFC) and Hybrid fiber bar (HFB) strengthened reinforced concrete (RC) beams. According to test results, Hybrid fiber reinforcement strengthened RC beams showed approximately 60 to 200% higher reinforcing effects than that of un-reinforced specimens. In addition, the reinforced beams showed the ideal failure pattern, which is failed presenting the ductile behavior after yielding of the reinforcing bar. More specifically, in the case of HFB reinforced RC beams, the difference with puttying method was not apparent since HFB beams reinforced using the injection of epoxy and bonding of putty showed the similar failure patterns.

Development of dynamic behavior of the novel composite T-joints: Numerical and experimental

  • Mokhtari, Madjid;Shahravi, Morteza;Zabihpoor, Mahmood
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.385-400
    • /
    • 2018
  • In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

Effect of Fine Alumina Filler Addition on the Thermal Conductivity of Non-conductive Paste (NCP) for Multi Flip Chip Bonding (멀티 플립칩 본딩용 비전도성 접착제(NCP)의 열전도도에 미치는 미세 알루미나 필러의 첨가 영향)

  • Jung, Da-Hoon;Lim, Da-Eun;Lee, So-Jeong;Ko, Yong-Ho;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.11-15
    • /
    • 2017
  • As the heat dissipation problem is increased in 3D multi flip chip packages, an improvement of thermal conductivity in bonding interfaces is required. In this study, the effect of alumina filler addition was investigated in non-conductive paste(NCP). The fine alumina filler having average particles size of 400 nm for the fine pitch interconnection was used. As the alumina filler content was increased from 0 to 60 wt%, the thermal conductivity of the cured product was increased up to 0.654 W/mK at 60 wt%. It was higher value than 0.501 W/mK which was reported for the same amount of silica. It was also found out that the addition of fine sized alumina filler resulted in the smaller decrease in thermal conductivity than the larger sized particles. The viscosity of NCP with alumina addition was increased sharply at the level of 40 wt%. It was due to the increase of the interaction between the filler particles according to the finer particle size. In order to achieve the appropriate viscosity and excellent thermal conductivity with fine alumina fillers, the highly efficient dispersion process was considered to be important.

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Polymer Composites with Functionalized Graphene Nanoplatelets (기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구)

  • Cha, Jaemin;Kim, Jun Hui;Ryu, Ho Jin;Hong, Soon H.
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.316-322
    • /
    • 2017
  • Carbon fiber is a material with excellent mechanical, electrical and thermal properties, which is widely used as a composite material made of a polymer matrix. However, this composite material has a weak point of interlaminar delamination due to weak interfacial bond with polymer matrix compared with high strength and elasticity of carbon fiber. In order to solve this problem, it is essential to use reinforcements. Due to excellent mechanical properties, graphene have been expected to have large improvement in physical properties as a reinforcing material. However, the aggregation of graphene and the weak interfacial bonding have resulted in failure to properly implement reinforcement effect. In order to solve this problems, dispersibility will be improved. In this study, functionalization of graphene nanoplatelet was proceeded with melamine and mixed with epoxy polymer matrix. The carbon fiber reinforced polymer composites were fabricated using the prepared graphene nanoplatelet/epoxy and flexural properties and interlaminar shear strength were measured. As a result, it was confirmed that the dispersibility of graphene nanoplatelet was improved and the mechanical properties of the composite material were increased.

Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2016
  • The evaluation of the lateral load performance for larch glulam portal frames was carried out using glass fiber reinforced plastic (GFRP) as connector in two different systems: the GFRP-reinforced laminated plates combined with veneer, and GFRP rod joints glued with epoxy resins to replace usual metal connectors for the structural glulam rahmen joints. As a result the yield strength, ultimate strength, initial stiffness of glulams of GFRP rod joints glued with epoxy resin decreased to 49%, 52% and 61% compared to those of the conventional metal connector. This connector will be a stress device where the bonding strength between the GFRP rod and glued laminated timber is important. Thus, there will be a high possibility that a problem may occur when it is applied to the field. On the other hand, the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin were measured all within 3% for all measurements of the yield strength, ultimate strength, initial strength and ductility factor, regardless of high cross sectional loss on the glued laminated timber slit joint. In addition, the variation of stiffness on the cycle was 35%, which was the lowest, confirming that it was almost the same performance as the specimen prepared with the metal connector.

Evaluation of Beam Behavior with External Bonded L-type GFRP Plate through bending Test (L형 GFRP 외부부착 보강된 보의 휨 실험을 통한 보강 거동분석)

  • Jeong, Yeong-Seok;Kwon, Min-Ho;Kim, Jin-Sup;Nam, Gwang-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.86-93
    • /
    • 2020
  • The demand for maintenance in Korea infrastructure facilities constructed since the 1970s has increased significantly compared to the demand for new construction. Moreover, after the Gyeongju and Pohang earthquakes, seismic performance evaluation, repair, and retrofitting projects have been carried out. Therefore, in this study, a specimen was designed following the L-type GFRP Plate Externally Bonded Retrofit method, one among other retrofit methods. The L-type GFRP Plate was bonded to the specimen by epoxy and a washered steel nail. A four-point bending test was performed to confirm the strengthening effect of the Externally Bonded Retrofit method using an L-type GFRP Plate. The strengthening effect of the L-type GFRP plate was proven experimentally, and the behavior of the beam designed following the L-type GFRP Plate Externally Bonded Retrofit method was evaluated according to Korea's "Design Manual & Specification for Strengthening of RC Structures by Advanced Composites System". Furthermore, the effectiveness of the bonding method, a combination of epoxy and washered steel nail, was also checked. The results showed that the design, according to the guidelines mentioned above, predicted the strength of the member well, but the failure mode did not satisfy the design assumption because of unexpected damage to the GFRP plate due to the fixing method, washered steel nail.

Material Analysis and Surface Condition Monitoring of Standing Buddha Statue in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석조미륵보살입상의 재질분석과 표면상태 변화 모니터링)

  • Lee, Myeong Seong;Choie, Myoungju;Yoo, Ji Hyun;Ahn, Yu Bin
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.227-236
    • /
    • 2019
  • Medium to coarse-grained biotite granodiorite was used to build the Standing Buddha Statue in the Gwanchoksa temple. An ancient document revealed the period and place of constructing the statue: it was made in the northwest of Mt. Banyasan and then moved eastward. Also, the comparison of standing Buddha statue and basement rock in terms of texture, magnetic susceptibility, and gamma spectrometer shows that they have similar characteristics, which is considered to be the same provenance rock. The damage caused by surface contaminants observed in the statue seems to be a combined effect of environmental factors and aging of the epoxy resin. After removal of the contaminants in 2007, the contamination has resumed, and continuous monitoring is necessary. Algal engraftment becomes faster when biological contamination occurs on the surface of stone cultural heritage. Since the secondary lichen growth forms a symbiosis with mold, it is necessary to observe the spatial and distributional changes. Also, the aging epoxy resin may cause secondary damage due to contaminants generated due to the determination of salts, and deterioration of bonding strength due to breaking out. Thus it is desirable to secure stability through proper conservation management.

Cure Behaviors and Fracture Toughness of PEl/Difunctional Epoxy Blends (PEI/DGEBA 블랜드계의 열적특성 및 파괴인성)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shinyoung
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.33-40
    • /
    • 2003
  • In this work, diglycidyl ether of bisphenol A (DGEBA)/polyetherimide (PEI) blends were cured using 4,4-diaminodiphenyl methane (DDM). And the effects of addition of different PEI contents to neat DGEBA were investigated in the thermal properties and fracture toughness of the blends. The contents of contents of containing PEI were varied in 0, 2.5, 5, 7.5, and 10 phr. The cure activation energies ($E_a$) of the cured specimens were determined by Kissinger equation and the mechanical interfacial properties of the specimens were performed by critical stress intensity factor ($K_{IC}$). Also their surfaces were examined by using a scanning electron microscope (SEM) and the surface energetics of blends was determined by contact angles. As a result, $E_a$ and $K_{IC}$ showed maximum values in the 7.5 phr PEI. This result was interpreted in the increment of the network structure of DGEBA/PEI blends. Also, the surface energetics of the DGEBA/PEI blends showed a similar behavior with the results of $K_{IC}$. This was probably due to the improving of specific or polor component of the surface free energy of DGEBA/PEI blends, resulting in increasing the hydrogen bonding of the hydroxyl and imide groups of the blends.

  • PDF

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

DRAM Package Substrate Using Aluminum Anodization (알루미늄 양극산화를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.69-74
    • /
    • 2010
  • A new package substrate for dynamic random access memory(DRAM) devices has been developed using selective aluminum anodization. Unlike the conventional substrate structure commonly made by laminating epoxy-based core and copper clad, this substrate consists of bottom aluminum, middle anodic aluminum oxide and top copper. Anodization process on the aluminum substrate provides thick aluminum oxide used as a dielectric layer in the package substrate. Placing copper traces on the anodic aluminum oxide layer, the resulting two-layer metal structure is completed in the package substrate. Selective anodization process makes it possible to construct a fully filled via structure. Also, putting vias directly in the bonding pads and the ball pads in the substrate design, via in pad structure is applied in this work. These arrangement of via in pad and two-layer metal structure make routing easier and thus provide more design flexibility. In a substrate design, all signal lines are routed based on the transmission line scheme of finite-width coplanar waveguide or microstrip with a characteristic impedance of about $50{\Omega}$ for better signal transmission. The property and performance of anodic alumina based package substrate such as layer structure, design method, fabrication process and measurement characteristics are investigated in detail.