• 제목/요약/키워드: epileptic seizure detection

검색결과 13건 처리시간 0.023초

The earth mover's distance and Bayesian linear discriminant analysis for epileptic seizure detection in scalp EEG

  • Yuan, Shasha;Liu, Jinxing;Shang, Junliang;Kong, Xiangzhen;Yuan, Qi;Ma, Zhen
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.373-382
    • /
    • 2018
  • Since epileptic seizure is unpredictable and paroxysmal, an automatic system for seizure detecting could be of great significance and assistance to patients and medical staff. In this paper, a novel method is proposed for multichannel patient-specific seizure detection applying the earth mover's distance (EMD) in scalp EEG. Firstly, the wavelet decomposition is executed to the original EEGs with five scales, the scale 3, 4 and 5 are selected and transformed into histograms and afterwards the distances between histograms in pairs are computed applying the earth mover's distance as effective features. Then, the EMD features are sent to the classifier based on the Bayesian linear discriminant analysis (BLDA) for classification, and an efficient postprocessing procedure is applied to improve the detection system precision, finally. To evaluate the performance of the proposed method, the CHB-MIT scalp EEG database with 958 h EEG recordings from 23 epileptic patients is used and a relatively satisfactory detection rate is achieved with the average sensitivity of 95.65% and false detection rate of 0.68/h. The good performance of this algorithm indicates the potential application for seizure monitoring in clinical practice.

L1-norm Minimization based Sparse Approximation Method of EEG for Epileptic Seizure Detection

  • Shin, Younghak;Seong, Jin-Taek
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.521-528
    • /
    • 2019
  • Epilepsy is one of the most prevalent neurological diseases. Electroencephalogram (EEG) signals are widely used for monitoring and diagnosis tool for epileptic seizure. Typically, a huge amount of EEG signals is needed, where they are visually examined by experienced clinicians. In this study, we propose a simple automatic seizure detection framework using intracranial EEG signals. We suggest a sparse approximation based classification (SAC) scheme by solving overdetermined system. L1-norm minimization algorithms are utilized for efficient sparse signal recovery. For evaluation of the proposed scheme, the public EEG dataset obtained by five healthy subjects and five epileptic patients is utilized. The results show that the proposed fast L1-norm minimization based SAC methods achieve the 99.5% classification accuracy which is 1% improved result than the conventional L2 norm based method with negligibly increased execution time (42msec).

Performance Estimation of an Implantable Epileptic Seizure Detector with a Low-power On-chip Oscillator

  • Kim, Sunhee;Choi, Yun Seo;Choi, Kanghyun;Lee, Jiseon;Lee, Byung-Uk;Lee, Hyang Woon;Lee, Seungjun
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.169-176
    • /
    • 2015
  • Implantable closed-loop epilepsy controllers require ideally both accurate epileptic seizure detection and low power consumption. On-chip oscillators can be used in implantable devices because they consume less power than other oscillators such as crystal oscillators. In this study, we investigated the tolerable error range of a lower power on-chip oscillator without losing the accuracy of seizure detection. We used 24 ictal and 14 interictal intracranial electroencephalographic segments recorded from epilepsy surgery patients. The performance variations with respect to oscillator frequency errors were estimated in terms of specificity, modified sensitivity, and detection timing difference of seizure onset using Generic Osorio Frei Algorithm. The frequency errors of on-chip oscillators were set at ${\pm}10%$ as the worst case. Our results showed that an oscillator error of ${\pm}10%$ affected both specificity and modified sensitivity by less than 3%. In addition, seizure onsets were detected with errors earlier or later than without errors and the average detection timing difference varied within less than 0.5 s range. The results suggest that on-chip oscillators could be useful for low-power implantable devices without error compensation circuitry requiring significant additional power. These findings could help the design of closed-loop systems with a seizure detector and automated stimulators for intractable epilepsy patients.

뇌전증 경련 억제를 위한 실시간 폐루프 신경 자극 시스템 설계 (Development of Real-time Closed-loop Neurostimulation System for Epileptic Seizure Suppression)

  • 김소원;김선희;이예나;황서영;강태경;전상범;이향운;이승준
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권4호
    • /
    • pp.95-102
    • /
    • 2015
  • Epilepsy is a chronic neurological disease which produces repeated seizures. Over 30% of epileptic patients cannot be treated with anti-epileptic drugs, and surgical resection may cause loss of brain functions. Seizure suppression by electrical stimulation is currently being investigated as a new treatment method as clinical evidence has shown that electrical stimulation to brain could suppress seizure activity. In this paper, design of a real-time closed-loop neurostimulation system for epileptic seizure suppression is presented. The system records neural signals, detects seizures and delivers electrical stimulation. The system consists of a 6-channel electrode, front-end amplifiers, a data acquisition board by National Instruments, and a neurostimulator and Generic Osorio-Frei algorithm was applied for seizure detection. The algorithm was verified through simulation using electroencephalogram data, and the operation of whole system was verified through simulation and in- vivo test.

뇌파의 중첩 분할에 기반한 CNN 앙상블 모델을 이용한 뇌전증 발작 검출 (Epileptic Seizure Detection Using CNN Ensemble Models Based on Overlapping Segments of EEG Signals)

  • 김민기
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권12호
    • /
    • pp.587-594
    • /
    • 2021
  • 뇌파(electroencephalogram, EEG)를 이용한 진단이 확대되면서 EEG 신호를 자동으로 분류하기 위한 다양한 연구가 활발히 이루어지고 있다. 본 논문은 일반인과 뇌전증 환자에게서 추출한 EEG 신호를 효과적으로 식별할 수 있는 CNN 모델을 제안한다. CNN의 학습에 필요한 데이터를 확장하기 위하여 EEG 신호를 낮은 차원의 신호로 분할하고, 이것을 다시 여러 개의 세그먼트로 중첩 분할하여 CNN 학습에 이용한다. 이와 더불어 CNN의 성능을 개선하기 위하여 CNN 앙상블 전략을 제안한다. 공개된 Bonn 데이터세트로 실험을 수행한 결과 뇌전증 발작을 99.0% 이상의 정확도로 검출하였고, 앙상블 방식에 의해 3-클래스와 5-클래스의 EEG 분류에서 정확도가 향상되었다.

웨이브렛과 신경회로망을 이용한 간질 파형 자동 검출 (AUTOMATIC DETECTION OF EPILEPTIFORM ACTIVITY USING WAVELET AND ARTIFICIAL NEURAL NETWORK)

  • 박현석;박창헌;이용희;이두수;김선일
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.358-361
    • /
    • 1997
  • This paper describes a multichannel epileptic seizure detection algorithm based on wavelet transform(WT), artificial neural network(ANN) and expert system. First, through the WT, a small number of wavelet coefficients is used to represent the single channel epileptic spike. Next, 3-layer feed-forward network employing the error back propagation algorithm is trained and tested using parameters obtained above. Finally, 16 channel expert system which is based on clinical experience is introduced as a artifact rejection and reliable detection. The suggested algorithm was implemented on personal computer(PC). Two main events i.e., epileptiform and normal activities, were selected from 32 person's EEGs(normal: 20, seizure disorder: 12) in consensus among experts. The result was that WT reduced data input size and ANN detected 97 of the 100 EEGs containing definite spike - sensitivity of 97%. Expert rule system was capable of rejecting a wide variety of artifacts commonly found in EEG recordings. It also reduced false positive detections of ANN.

  • PDF

Automated epileptic seizure waveform detection method based on the feature of the mean slope of wavelet coefficient counts using a hidden Markov model and EEG signals

  • Lee, Miran;Ryu, Jaehwan;Kim, Deok-Hwan
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.217-229
    • /
    • 2020
  • Long-term electroencephalography (EEG) monitoring is time-consuming, and requires experts to interpret EEG signals to detect seizures in patients. In this paper, we propose a novel automated method called adaptive slope of wavelet coefficient counts over various thresholds (ASCOT) to classify patient episodes as seizure waveforms. ASCOT involves extracting the feature matrix by calculating the mean slope of wavelet coefficient counts over various thresholds in each frequency subband. We validated our method using our own database and a public database to avoid overtuning. The experimental results show that the proposed method achieved a reliable and promising accuracy in both our own database (98.93%) and the public database (99.78%). Finally, we evaluated the performance of the method considering various window sizes. In conclusion, the proposed method achieved a reliable seizure detection performance with a short-term window size. Therefore, our method can be utilized to interpret long-term EEG results and detect momentary seizure waveforms in diagnostic systems.

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

순환 합성곱 신경망를 이용한 다채널 뇌파 분석의 간질 발작 탐지 (Epileptic Seizure Detection for Multi-channel EEG with Recurrent Convolutional Neural Networks)

  • 유지현
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1175-1179
    • /
    • 2018
  • 본 논문에서는 뇌파 신호를 이용하여 환자의 경련을 감지하는 순환 CNN (Convolutional Neural Networks)을 제안한다. 제안 된 방법은 뇌파 신호의 스펙트럼 특성과 전극의 위치를 보존하기 위해 영상으로 데이터를 매핑하여 처리하였다. 스펙트럼 전처리 과정을 거친 후 CNN에 입력하고 공간 및 시간 특성을 웨이블릿 변환(wavelet transform)없이 추출하여 발작을 검출하였다. 여기에 사용된 보스턴 매사추세츠 공과 대학 (Boston Massachusetts Institute of Technology, CHB-MIT) 아동 병원의 데이터셋 결과는 시간당 0.85의 민감도와 90 %의 위양성 비율 (FPR)을 보였다.

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • 제63권3호
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.