1 |
K. Jung, "Epidemiology of epilepsy in Korea," Epilia: Epilepsy and Community, Vol.2, No.1, pp.17-20, 2020.
DOI
|
2 |
R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, "Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state," Physical Review, Vol.64, No.6, pp.1-8, 2001.
|
3 |
Epileptic Seizure Recognition Data Set [Internet], https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition.
|
4 |
D. J. McFarland and J. R. Wolpaw, "EEG-based brain-computer interfaces," Current Opinion in Biomedical Engineering, Vol.4, pp.194-200, 2017.
DOI
|
5 |
M. R. Mohammadi, A. Khaleghi, A. M. Nasrabadi, S. Rafieivand, M. Begol, and H. Zarafshan, "EEG classification of ADHD and normal children using non-linear featuers and neural network," Biomedical Engineering Letter, Vol.6, No.2, pp.66-73, 2016.
DOI
|
6 |
S. Bavkar, B. Iyer, and S. Deosarkar, "Detection of alcoholism: An EEG hybrid features and ensemble subspace K-NN based approach," In International Conference on Distributed Computing and Internet Technology (pp.161-168), Springer, Cham, 2019.
|
7 |
A. Demerdzieva, "EEG characteristics of generalized anxiety disorder in childhood," Acta Informatica Medica, Vol.19, No.1, pp.9-15, 2011.
|
8 |
R. T. Schirrmeister, et al., "Deep learning with convolutional neural networks for EEG decoding and visualization," in Human Brain Mapping, Vol.38, No.11, pp.5391-5420, 2017.
DOI
|
9 |
M. Savadkoohi, T. Oladunni, and L. Thompson, "A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) signal," Biocybernetics and Biomedical Engineering, Vol.40, No.3, pp.1328-1341, 2020.
DOI
|
10 |
A. Bhattacharyya and B. Pachori, "A multivariate approach for patient specific EEG seizure detection using empirical wavelet transform," IEEE Transactions on Biomeical Engineering, Vol.64, No.9, pp.2003-2015, 2017.
DOI
|
11 |
K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan. "Filter bank common spatial pattern (FBCSP) in brain-computer interface," in Proceedings of IEEE International Joint Conference on Neural Nwtworks, pp.2390-2397, 2008.
|
12 |
P. Sandheep, S. Vineeth, P. Meljo, and D. P. Subha, "Performance analysis of deep learning CNN in classification of depression EEG signals," in Proceedings of IEEE Region 10 Conference, pp.1339-1344, 2019.
|
13 |
G. Xu, T. Ren, Y. Chen, and W. Che, "A one-dimensional CNN-LSTM model for epileptic seizure recognition using EEG signal analysis," Frontiers in Neuroscience, Vol.14, pp.1-9, 2020.
DOI
|
14 |
R. A. Ricardo, O. L. Arturo, and O. P. Ivan, "Analysis of EEG signal processing techniques based on spectrograms," Research in Computing Science, Vol.145, pp.151-162, 2017.
DOI
|
15 |
N. Kumar, K, Alam, and A. H. Siddiqi, "Wavelet transform for classification of EEG signal using SVM and ANN," Biomedical & Phamacology Journal, Vol.10, No.4, pp.2061-2069, 2017.
|
16 |
K. C. Hsu and S. N. Yu, "Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm," Computers in Biology and Medicine, Vol.40, No.10, pp.823-830, 2010.
DOI
|
17 |
U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli, "Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals," Computers in Biology and Medicine, Vol.100, pp.270-278, 2018.
DOI
|
18 |
I. Ullah, M. Hussain, E. Qazi, and H. Aboalsamh, "An automated system for epilepsy detection using EEG brain signals based on deep learning approach," Expert Systems With Applications, Vol.107, pp.61-71, 2018.
DOI
|
19 |
W. Mao, H. I. K. Fathurrahman, Y. Lee, and T. W. Chang, "EEG dataset classification using CNN method," Journal of Physics: Conference Series, Vol.1456, pp.1-7, 2020.
|