• 제목/요약/키워드: epigenetic inheritance

검색결과 8건 처리시간 0.025초

Negative evidence on the transgenerational inheritance of defense priming in Arabidopsis thaliana

  • Yun, Se-Hun;Noh, Bosl;Noh, Yoo-Sun
    • BMB Reports
    • /
    • 제55권7호
    • /
    • pp.342-347
    • /
    • 2022
  • Defense priming allows plants to enhance their immune responses to subsequent pathogen challenges. Recent reports suggested that acquired resistances in parental generation can be inherited into descendants. Although epigenetic mechanisms are plausible tools enabling the transmission of information or phenotypic traits induced by environmental cues across generations, the mechanism for the transgenerational inheritance of defense priming in plants has yet to be elucidated. With the initial aim to elucidate an epigenetic mechanism for the defense priming in plants, we reassessed the transgenerational inheritance of plant defense, however, could not observe any evidence supporting it. By using the same dipping method with previous reports, Arabidopsis was exposed repeatedly to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) during vegetative or reproductive stages. Irrespective of the developmental stages of parental plants that received pathogen infection, the descendants did not exhibit primed resistance phenotypes, defense marker gene (PR1) expression, or elevated histone acetylation within PR1 chromatin. In assays using the pressure-infiltration method for infection, we obtained the same results as above. Thus, our results suggest that the previous observations on the transgenerational inheritance of defense priming in plants should be more extensively and carefully reassessed.

Differential Inheritance Modes of DNA Methylation between Euchromatic and Heterochromatic DNA Sequences in Ageing Fetal Bovine Fibroblasts

  • Y.K. Kang;D.B. Koo;Park, J.S.;Park, Y.H.;Lee, K.K.;Y.M. Han
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.49-49
    • /
    • 2001
  • To elucidate overall changes in DNA methylation that occurs by inappropriate epigenetic control during ageing, we compared fetal bovine fibroblasts and their aged neomycin-resistant versions using bisulfite-PCR technology. Reduction in DNA methylation was observed in euchromatic repeats (18S-rRNA/art2) and promoter regions of sing1e-copy genes (the cytokeratin/-lactoglobulin/interleukin-13 genes). Contrastingly, a stable maintenance of DNA methylation was revealed in various heterochromatic sequences (satellite I/IIalphoid and Bov-B). The differential inheritance modes of DNA methylation was confirmed through the analysis of individual neomycin-resistant clones. These global, multi-loci analyses provide evidence on the tendency of differential epigenetic modification between genomic DNA regions during ageing.

  • PDF

Epigenetic Regulation of Plant Reproductive Development

  • Vyskot, Boris
    • 식물조직배양학회지
    • /
    • 제27권5호
    • /
    • pp.359-366
    • /
    • 2000
  • Epigenetics represents a chromatin-mediated transcriptional repression which plays a control role in both animal and plant development. A number of different mechanisms have been described to be involved in the formation of chromatin structure: especially DNA methylation, nucleosomal histone modification, DNA replication timing, and binding of chromatin remodelling proteins. Epigenetic phenomena include genomic imprinting, dosage compensation of X-chromosome linked genes, mutual allelic interactions, paramutation, transvection, silencing of invasive DNA sequences, etc. They are often unstable and inherited in a non-Mendelian way. A number of epigenetic defects has been preferentially described in floral development. Here, epigenetic phenomena in model angiosperm plants and their corresponding mechanisms are reviewed.

  • PDF

Multi-omics integration strategies for animal epigenetic studies - A review

  • Kim, Do-Young;Kim, Jun-Mo
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1271-1282
    • /
    • 2021
  • Genome-wide studies provide considerable insights into the genetic background of animals; however, the inheritance of several heritable factors cannot be elucidated. Epigenetics explains these heritabilities, including those of genes influenced by environmental factors. Knowledge of the mechanisms underlying epigenetics enables understanding the processes of gene regulation through interactions with the environment. Recently developed next-generation sequencing (NGS) technologies help understand the interactional changes in epigenetic mechanisms. There are large sets of NGS data available; however, the integrative data analysis approaches still have limitations with regard to reliably interpreting the epigenetic changes. This review focuses on the epigenetic mechanisms and profiling methods and multi-omics integration methods that can provide comprehensive biological insights in animal genetic studies.

Epigenetics: A key paradigm in reproductive health

  • Bunkar, Neha;Pathak, Neelam;Lohiya, Nirmal Kumar;Mishra, Pradyumna Kumar
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제43권2호
    • /
    • pp.59-81
    • /
    • 2016
  • It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.

PIWI Proteins and piRNAs in the Nervous System

  • Kim, Kyung Won
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.828-835
    • /
    • 2019
  • PIWI Argonaute proteins and Piwi-interacting RNAs (piRNAs) are expressed in all animal species and play a critical role in cellular defense by inhibiting the activation of transposable elements in the germline. Recently, new evidence suggests that PIWI proteins and piRNAs also play important roles in various somatic tissues, including neurons. This review summarizes the neuronal functions of the PIWI-piRNA pathway in multiple animal species, including their involvement in axon regeneration, behavior, memory formation, and transgenerational epigenetic inheritance of adaptive memory. This review also discusses the consequences of dysregulation of neuronal PIWI-piRNA pathways in certain neurological disorders, including neurodevelopmental and neurodegenerative diseases. A full understanding of neuronal PIWI-piRNA pathways will ultimately provide novel insights into small RNA biology and could potentially provide precise targets for therapeutic applications.

닭 텔로미어 길이의 유전력 추정과 유전 전이 양상 (Inheritance and Heritability of Telomere Length in Chicken)

  • 박단비;손시환
    • 한국가금학회지
    • /
    • 제41권3호
    • /
    • pp.217-225
    • /
    • 2014
  • 텔로미어는 진핵 세포의 염색체 말단으로, 직렬 반복 DNA 염기 서열과 shelterin 단백질 복합체로 구성되어 있다. 텔로미어의 기능은 염색체를 보호하는 것으로 체세포의 텔로미어 길이는 세포 분열시 DNA 복제 결실로 인해 연령이 증가함에 따라 감소하는 경향이 있다. 그러나 유전적, 후생유전학적 및 환경적 수준에서 여러 가지 요인이 텔로미어 길이에 영향을 미친다. 따라서 본 연구에서는 닭의 텔로미어 길이의 유전력을 추정하고, 이들의 유전전이 양상을 살펴보고자 하였다. 텔로미어 길이는 백혈구를 이용하여 양적 형광접합보인법(Q-FISH)과 양적 중합효소 연쇄반응법(qRT-PCR)으로 분석하였다. 분석 결과, 텔로미어 길이의 유전력은 자손과 부모 회귀 분석에 의해 출생 시 0.9로 추정되었고, 10 주령 및 30주령 때 부 분산 분석에 의해 0.03과 0.04로 추정되었다. 부와 자손 간(r=0.348) 및 모와 자손 간(r=0.380) 텔로미어 길이는 모두 유의한 정의 상관 관계를 보였다. 따라서 닭 텔로미어의 유전 전이 양상은 부모 양쪽 모두로부터 비슷하게 자식에 영향을 미치는 것으로 판단된다. 더불어 암수 자손에 미치는 영향 또한 유사한 것으로 나타났다. 이러한 결과는 부모의 텔로미어 길이의 각인이 성염색체의 유전자가 아닌 상염색체의 유전자에 의해 조절되는 것을 의미한다. 또한, 산모 연령에 따른 출생 자손의 텔로미어 길이는 차이가 없는 것으로 나타났다. 따라서 모체의 연령이 출생 자손의 텔로미어 길이에 영향을 미치지 않는데, 이는 수정란의 초기 배아 단계에서 세포적 reprogramming이 이루어지기 때문으로 사료된다.

Contemporary Issues Surrounding Folic Acid Fortification Initiatives

  • Choi, Jeong-Hwa;Yates, Zoe;Veysey, Martin;Heo, Young-Ran;Lucock, Mark
    • Preventive Nutrition and Food Science
    • /
    • 제19권4호
    • /
    • pp.247-260
    • /
    • 2014
  • The impact of folate on health and disease, particularly pregnancy complications and congenital malformations, has been extensively studied. Mandatory folic acid fortification therefore has been implemented in multiple countries, resulting in a reduction in the occurrence of neural tube defects. However, emerging evidence suggests increased folate intake may also be associated with unexpected adverse effects. This literature review focuses on contemporary issues of concern, and possible underlying mechanisms as well as giving consideration the future direction of mandatory folic acid fortification. Folate fortification has been associated with the presence of unmetabolized folic acid (PteGlu) in blood, masking of vitamin $B_{12}$ deficiency, increased dosage for anti-cancer medication, photo-catalysis of PteGlu leading to potential genotoxicity, and a role in the pathoaetiology of colorectal cancer. Increased folate intake has also been associated with twin birth and insulin resistance in offspring, and altered epigenetic mechanisms of inheritance. Although limited data exists to elucidate potential mechanisms underlying these issues, elevated blood folate level due to the excess use of PteGlu without consideration of an individual's specific phenotypic traits (e.g. genetic background and undiagnosed disease) may be relevant. Additionally, the accumulation of unmetabolized PteGlu may lead to inhibition of dihydrofolate reductase and other enzymes. Concerns notwithstanding, folic acid fortification has achieved enormous advances in public health. It therefore seems prudent to target and carefully monitor high risk groups, and to conduct well focused further research to better understand and to minimize any risk of mandatory folic acid fortification.