Browse > Article
http://dx.doi.org/10.5713/ab.21.0042

Multi-omics integration strategies for animal epigenetic studies - A review  

Kim, Do-Young (Department of Animal Science and Technology, Chung-Ang University)
Kim, Jun-Mo (Department of Animal Science and Technology, Chung-Ang University)
Publication Information
Animal Bioscience / v.34, no.8, 2021 , pp. 1271-1282 More about this Journal
Abstract
Genome-wide studies provide considerable insights into the genetic background of animals; however, the inheritance of several heritable factors cannot be elucidated. Epigenetics explains these heritabilities, including those of genes influenced by environmental factors. Knowledge of the mechanisms underlying epigenetics enables understanding the processes of gene regulation through interactions with the environment. Recently developed next-generation sequencing (NGS) technologies help understand the interactional changes in epigenetic mechanisms. There are large sets of NGS data available; however, the integrative data analysis approaches still have limitations with regard to reliably interpreting the epigenetic changes. This review focuses on the epigenetic mechanisms and profiling methods and multi-omics integration methods that can provide comprehensive biological insights in animal genetic studies.
Keywords
Epigenetic; Methylome; Transcriptome; Multi-omics Integration Analysis; Gene Regulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics 2020;12:123. https://doi.org/10.1186/s13148-020-00913-6   DOI
2 Zhang M, Yan FB, Li F, et al. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Sci Rep 2017;7:45564. https://doi.org/10.1038/srep45564   DOI
3 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30. https://doi.org/10.1093/nar/28.1.27   DOI
4 Fabregat A, Sidiropoulos K, Viteri G, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics 2017;18:142. https://doi.org/10.1186/s12859-017-1559-2   DOI
5 Kim JM, Park JE, Yoo I, et al. Integrated transcriptomes throughout swine oestrous cycle reveal dynamic changes in reproductive tissues interacting networks. Sci Rep 2018;8: 5436. https://doi.org/10.1038/s41598-018-23655-1   DOI
6 Shen J, Zhu B. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes. Mol Med Rep 2018;17:7636-44. https://doi.org/10.3892/mmr.2018.8804   DOI
7 Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011;43:904-14. https://doi.org/10.1016/j.molcel.2011.08.018   DOI
8 Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009;10:94-108. https://doi.org/10.1038/nrg2504   DOI
9 Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 2008;410:9-17. https://doi.org/10.1016/j.gene.2007.12.008   DOI
10 Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics-Us 2014;9:3-12. https://doi.org/10.4161/epi.27473   DOI
11 Tang X, Feng D, Li M, et al. Transcriptomic analysis of mRNA-lncRNA-miRNA interactions in hepatocellular carcinoma. Sci Rep 2019;9:16096. https://doi.org/10.1038/s41598-019-52559-x   DOI
12 Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science 2001;294:797-9. https://doi.org/10.1126/science.1066315   DOI
13 Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010;11:597-610. https://doi.org/10.1038/nrg2843   DOI
14 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20. https://doi.org/10.1016/j.cell.2004.12.035   DOI
15 Dennis G, Jr., Sherman BT, Hosack DA, et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 2003;4:R60. https://doi.org/10.1186/gb-2003-4-9-r60   DOI
16 Voigt A, Almaas E. Assessment of weighted topological overlap (wTO) to improve fidelity of gene co-expression networks. BMC Bioinformatics 2019;20:58. https://doi.org/10.1186/s12859-019-2596-9   DOI
17 Moreno-Estrada A, Gravel S, Zakharia F, et al. Reconstructing the population genetic history of the Caribbean. PLoS Genet 2013;9:e1003925. https://doi.org/10.1371/journal.pgen.1003925   DOI
18 Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet 1999;21:20-4. https://doi.org/10.1038/4447   DOI
19 Xu W, Xu M, Wang L, et al. Integrative analysis of DNA methylation and gene expression identified cervical cancer-specific diagnostic biomarkers. Signal Transduct Target Ther 2019;4:55. https://doi.org/10.1038/s41392-019-0081-6   DOI
20 Silverbush D, Cristea S, Yanovich-Arad G, Geiger T, Beerenwinke N, Sharan R. Simultaneous integration of multi-omics data improves the identification of cancer driver modules. Cell Syst 2019;8:456-66. https://doi.org/10.1016/j.cels.2019.04.005   DOI
21 Chella Krishnan K, Kurt Z, Barrere-Cain R, et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst 2018;6:103-15. https://doi.org/10.1016/j.cels.2017.12.006   DOI
22 Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 2014;15:162. https://doi.org/10.1186/1471-2105-15-162   DOI
23 Rajewsky N. microRNA target predictions in animals. Nat Genet 2006;38(Suppl):S8-13. https://doi.org/10.1038/ng1798   DOI
24 Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9. https://doi.org/10.1038/nature01957   DOI
25 Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60. https://doi.org/10.1126/science.1073827   DOI
26 Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13:484-92. https://doi.org/10.1038/nrg3230   DOI
27 Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855-62. https://doi.org/10.1016/0092-8674(93)90530-4   DOI
28 Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009;136:629-41. https://doi.org/10.1016/j.cell.2009.02.006   DOI
29 Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006;29:77-103. https://doi.org/10.1146/annurev.neuro.29.051605.112839   DOI
30 Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002;3:662-73. https://doi.org/10.1038/nrg887   DOI
31 Jin SG, Wu X, Li AX, Pfeifer GP. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 2011;39:5015-24. https://doi.org/10.1093/nar/gkr120   DOI
32 Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 2006; 103:1412-7. https://doi.org/10.1073/pnas.0510310103   DOI
33 Li X, Teng S. RNA Sequencing in Schizophrenia. Bioinform Biol Insights 2015;9:53-60. https://doi.org/10.4137/BBI.S28992   DOI
34 Suzuki M, Jing QA, Lia D, Pascual M, McLellan A, Greally JM. Optimized design and data analysis of tag-based cytosine methylation assays. Genome Biol 2010;11:R36. https://doi.org/10.1186/gb-2010-11-4-r36   DOI
35 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63. https://doi.org/10.1038/nrg2484   DOI
36 Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 2009;22:611-33. https://doi.org/10.1128/CMR.00019-09   DOI
37 Russo G, Zegar C, Giordano A. Advantages and limitations of microarray technology in human cancer. Oncogene 2003; 22:6497-507. https://doi.org/10.1038/sj.onc.1206865   DOI
38 Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008; 18:1509-17. https://doi.org/10.1101/gr.079558.108   DOI
39 Levin JZ, Berger MF, Adiconis X, et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol 2009;10:R115. https://doi.org/10.1186/gb-2009-10-10-r115   DOI
40 Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013;14:618-30. https://doi.org/10.1038/nrg3542   DOI
41 Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res 2015;27:84-97. https://doi.org/10.1007/s12640-014-9497-5   DOI
42 Zhang W, Tang G, Zhou S, Niu Y. LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination. BMC Genomics 2019;20:946. https://doi.org/10.1186/s12864-019-6284-y   DOI
43 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. https://doi.org/10.1016/j.cell.2009.01.002   DOI
44 Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23:1494-504. https://doi.org/10.1101/gad.1800909   DOI
45 Morrissy AS, Morin RD, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling. Genome Res 2009;19:1825-35. https://doi.org/10.1101/gr.094482.109   DOI
46 Hafner M, Landgraf P, Ludwig J, et al. Identification of micro-RNAs and other small regulatory RNAs using cDNA library sequencing. Methods 2008;44:3-12. https://doi.org/10.1016/j.ymeth.2007.09.009   DOI
47 Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010;466:253-7. https://doi.org/10.1038/nature09165   DOI
48 Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005;37:853-62. https://doi.org/10.1038/ng1598   DOI
49 Wang L, Xiao Y, Ping Y, et al. Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer. PLoS One 2014;9:e104282. https://doi.org/10.1371/journal.pone.0104282   DOI
50 Kriukiene E, Labrie V, Khare T, et al. DNA unmethylome profiling by covalent capture of CpG sites. Nat Commun 2013;4:2190. https://doi.org/10.1038/ncomms3190   DOI
51 Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008;452:215-9. https://doi.org/10.1038/nature06745   DOI
52 Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 2005;33:5868-77. https://doi.org/10.1093/nar/gki901   DOI
53 Laurent L, Wong E, Li G, et al. Dynamic changes in the human methylome during differentiation. Genome Res 2010;20:320-31. https://doi.org/10.1101/gr.101907.109   DOI
54 Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 2010;38:391-9. https://doi.org/10.1093/nar/gkp992   DOI
55 Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenetics Chromatin 2016;9:26. https://doi.org/10.1186/s13072-016-0075-3   DOI
56 Greally JM. The HELP-based DNA methylation assays. In: Tost J, editor. DNA methylation protocols. Methods in Molecular Biology, vol 1708. New York, NY, USA: Humana Press; 2018. pp. 191-207. https://doi.org/10.1007/978-1-4939-7481-8_11
57 Nair SS, Coolen MW, Stirzaker C, et al. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics-Us 2011;6:34-44. https://doi.org/10.4161/epi.6.1.13313   DOI
58 Harris RA, Wang T, Coarfa C, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28:1097-1105. https://doi.org/10.1038/nbt.1682   DOI
59 Bock C, Tomazou EM, Brinkman AB, et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 2010;28:1106-14. https://doi.org/10.1038/nbt.1681   DOI
60 Suzuki M, Greally JM. DNA methylation profiling using HpaII tiny fragment enrichment by ligation-mediated PCR (HELP). Methods 2010;52:218-22. https://doi.org/10.1016/j.ymeth.2010.04.013   DOI
61 Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 2011;6:468-81. https://doi.org/10.1038/nprot.2010.190   DOI
62 Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet 2011;12:529-41. https://doi.org/10.1038/nrg3000   DOI
63 Mohn F, Weber M, Schubeler D, Roloff TC. Methylated DNA immunoprecipitation (MeDIP). In: Tost J, editor. DNA methylation. Methods in Molecular Biology, vol 507. New York, NY, USA: Humana Press; 2009. pp. 55-64. https://doi.org/10.1007/978-1-59745-522-0_5
64 Khulan B, Thompson RF, Ye K, et al. Comparative isoschizomer profiling of cytosine methylation: The HELP assay. Genome Res 2006;16:1046-55. https://doi.org/10.1101/gr.5273806   DOI
65 Hu Q, Ao Q, Tan Y, Gan X, Luo Y, Zhu J. Genome-wide DNA methylation and RNA analysis reveal potential mechanism of resistance to Streptococcus agalactiae in GIFT strain of nile tilapia (Oreochromis niloticus). J Immunol 2020;204: 3182-90. https://doi.org/10.4049/jimmunol.1901496   DOI
66 Wilson S, Filipp FV. A network of epigenomic and transcriptional cooperation encompassing an epigenomic master regulator in cancer. NPJ Syst Biol Appl 2018;4:24. https://doi.org/10.1038/s41540-018-0061-4   DOI
67 Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001;70:81-120. https://doi.org/10.1146/annurev.biochem.70.1.81   DOI
68 Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-80. https://doi.org/10.1126/science.1063127   DOI
69 Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell 2009;33:1-13. https://doi.org/10.1016/j.molcel.2008.12.013   DOI
70 Chen SY, Sang NL. Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol 2011;2011:Article ID 197946. https://doi.org/10.1155/2011/197946   DOI
71 Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol 2002;3:RESEARCH0059.1 https://doi.org/10.1186/gb-2002-3-11-research0059   DOI
72 Lan F, Shi Y. Epigenetic regulation: methylation of histone and non-histone proteins. Sci China Ser C Life Sci 2009;52: 311-22. https://doi.org/10.1007/s11427-009-0054-z   DOI
73 Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315-22. https://doi.org/10.1038/nature08514   DOI
74 Lim B, Kim S, Lim KS, et al. Integrated time-serial transcriptome networks reveal common innate and tissue-specific adaptive immune responses to PRRSV infection. Vet Res 2020;51:128. https://doi.org/10.1186/s13567-020-00850-5   DOI
75 Acharjee A, Kloosterman B, Visser RGF, Maliepaard C. Integration of multi-omics data for prediction of phenotypic traits using random forest. BMC Bioinformatics 2016;17 (Suppl 5):180. https://doi.org/10.1186/s12859-016-1043-4   DOI
76 Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief Bioinform 2016;17:628-41. https://doi.org/10.1093/bib/bbv108   DOI
77 Davie JR, Spencer VA. Control of histone modifications. J Cell Biochem 1999;75:141-8. https://doi.org/10.1002/(SICI)1097-4644(1999)75:32+<141::AID-JCB17>3.0.CO;2-A   DOI
78 Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705. https://doi.org/10.1016/j.cell.2007.02.005   DOI
79 Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5. https://doi.org/10.1038/47412   DOI
80 Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol R 2000;64:435-59. https://doi.org/10.1128/Mmbr.64.2.435-459.2000   DOI
81 Kim KD, El Baidouri M, Jackson SA. Accessing epigenetic variation in the plant methylome. Brief Funct Genomics 2014;13:318-27. https://doi.org/10.1093/bfgp/elu003   DOI
82 Kundu TK, Palhan VB, Wang ZX, An W, Cole PA, Roeder RG. Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell 2000;6:551-61. https://doi.org/10.1016/S1097-2765(00)00054-X   DOI
83 An W. Histone acetylation and methylation: combinatorial players for transcriptional regulation. In: Kundu TK, Dasgupta D, editors. Chromatin and disease. New York, USA: Springer-Verlag; 2007. p. 351-69. https://doi.org/10.1007/1-4020-5466-1_16
84 Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000;22:836-45. https://doi.org/10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X   DOI
85 Nestor CE, Ottaviano R, Reddington J, et al. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 2012;22:467-77. https://doi.org/10.1101/gr.126417.111   DOI
86 Neidhart M. DNA methylation and complex human disease. San Diego, CA, USA: Elsevier/AP, Academic Press is an imrpint of Elsevier; 2016.
87 Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2011; 2:607-17. https://doi.org/10.1177/1947601910393957   DOI
88 Lee J, Jang SJ, Benoit N, et al. Presence of 5-methylcytosine in CpNpG trinucleotides in the human genome. Genomics 2010;96:67-72. https://doi.org/10.1016/j.ygeno.2010.03.013   DOI
89 Crea F, Clermont PL, Mai A, Helgason CD. Histone modifications, stem cells and prostate cancer. Curr Pharm Design 2014;20:1687-97. https://doi.org/10.2174/13816128113199990522   DOI
90 Ng SS, Yue WW, Oppermann U, Klose RJ. Dynamic protein methylation in chromatin biology. Cell Mol Life Sci 2009;66: 407. https://doi.org/10.1007/s00018-008-8303-z   DOI
91 Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature 2002;419:407-11. https://doi.org/10.1038/nature01080   DOI
92 Vermeulen M, Timmers HTM. Grasping trimethylation of histone H3 at lysine 4. Epigenomics-Uk 2010;2:395-406. https://doi.org/10.2217/Epi.10.11   DOI
93 Noma K, Allis CD, Grewal SIS. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 2001;293:1150-5. https://doi.org/10.1126/science.1064150   DOI
94 Pinskaya M, Morillon A. Histone H3 lysine 4 di-methylation A novel mark for transcriptional fidelity? Epigenetics-Us 2009;4:302-6. https://doi.org/10.4161/epi.4.5.9369   DOI
95 Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002;16:720-8. https://doi.org/10.1101/gad.974702   DOI
96 Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab 2000; 11:142-8. https://doi.org/10.1016/s1043-2760(00)00248-4   DOI
97 Hassan MQ, Tye CE, Stein GS, Lian JB. Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone 2015;81:746-56. https://doi.org/10.1016/j.bone.2015.05.026   DOI
98 Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446-50. https://doi.org/10.1038/nrg2809   DOI
99 Lu Y, Boekschoten MV, Wopereis S, Muller M, Kersten S. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiol Genomics 2011;43:1307-18. https://doi.org/10.1152/physiolgenomics.00100.2011   DOI
100 Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808-15. https://doi.org/10.1093/nar/gks1094   DOI
101 Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429:457-63. https://doi.org/10.1038/nature02625   DOI
102 Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010;330:612-6. https://doi.org/10.1126/science.1191078   DOI
103 Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251-60. https://doi.org/10.1038/38444   DOI
104 Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-95. https://doi.org/10.1038/cr.2011.22   DOI