Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0241

PIWI Proteins and piRNAs in the Nervous System  

Kim, Kyung Won (Convergence Program of Material Science for Medicine and Pharmaceutics, Department of Life Science, Multidisciplinary Genome Institute, Hallym University)
Abstract
PIWI Argonaute proteins and Piwi-interacting RNAs (piRNAs) are expressed in all animal species and play a critical role in cellular defense by inhibiting the activation of transposable elements in the germline. Recently, new evidence suggests that PIWI proteins and piRNAs also play important roles in various somatic tissues, including neurons. This review summarizes the neuronal functions of the PIWI-piRNA pathway in multiple animal species, including their involvement in axon regeneration, behavior, memory formation, and transgenerational epigenetic inheritance of adaptive memory. This review also discusses the consequences of dysregulation of neuronal PIWI-piRNA pathways in certain neurological disorders, including neurodevelopmental and neurodegenerative diseases. A full understanding of neuronal PIWI-piRNA pathways will ultimately provide novel insights into small RNA biology and could potentially provide precise targets for therapeutic applications.
Keywords
neurological disorders; non-coding RNA; posttranscriptional gene silencing; small RNA; transposable elements;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gunawardane, L.S., Saito, K., Nishida, K.M., Miyoshi, K., Kawamura, Y., Nagami, T., Siomi, H., and Siomi, M.C. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science 315, 1587-1590.   DOI
2 Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M., and Bastiani, M. (2009). Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802-806.   DOI
3 Horwich, M.D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P., and Zamore, P.D. (2007). The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265-1272.   DOI
4 Houri-Ze'evi, L., Korem, Y., Sheftel, H., Faigenbloom, L., Toker, I.A., Dagan, Y., Awad, L., Degani, L., Alon, U., and Rechavi, O. (2016). A tunable mechanism determines the duration of the transgenerational small RNA inheritance in C. elegans. Cell 165, 88-99.   DOI
5 Hu, P.J. (2007). Dauer. In WormBook, The C. elegans Research Community, ed. (Pasadena, CA: WormBook), pp. 1-19.
6 Iossifov, I., O'Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216-221.   DOI
7 Jones, B.C., Wood, J.G., Chang, C., Tam, A.D., Franklin, M.J., Siegel, E.R., and Helfand, S.L. (2016). A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat. Commun. 7, 13856.   DOI
8 Kim, I.V., Duncan, E.M., Ross, E.J., Gorbovytska, V., Nowotarski, S.H., Elliott, S.A., Sanchez Alvarado, A., and Kuhn, C.D. (2019). Planarians recruit piRNAs for mRNA turnover in adult stem cells. Genes Dev. 33, 1575-1590.   DOI
9 Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., and Zoghbi, H.Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185-188.   DOI
10 Amir, R.E. and Zoghbi, H.Y. (2000). Rett syndrome: methyl-CpG-binding protein 2 mutations and phenotype-genotype correlations. Am. J. Med. Genet. 97, 147-152.   DOI
11 Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207.   DOI
12 Aravin, A.A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K.F., Bestor, T., and Hannon, G.J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785-799.   DOI
13 Ashe, A., Sapetschnig, A., Weick, E.M., Mitchell, J., Bagijn, M.P., Cording, A.C., Doebley, A.L., Goldstein, L.D., Lehrbach, N.J., Le Pen, J., et al. (2012). piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88-99.   DOI
14 Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T.W., Isobe, T., Asada, N., Fujita, Y., Ikawa, M., Iwai, N., Okabe, M., Deng, W., et al. (2004). Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839-849.   DOI
15 Kim, K.W., Tang, N.H., Andrusiak, M.G., Wu, Z., Chisholm, A.D., and Jin, Y. (2018a). A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron 97, 511-519.e6.   DOI
16 Kim, K.W., Tang, N.H., Piggott, C.A., Andrusiak, M.G., Park, S., Zhu, M., Kurup, N., Cherra, S.J., 3rd, Wu, Z., Chisholm, A.D., et al. (2018b). Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for $NAD^{+}$ in axon regeneration. Elife 7, e39756.   DOI
17 Kirino, Y. and Mourelatos, Z. (2007). Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini. Nat. Struct. Mol. Biol. 14, 347-348.   DOI
18 Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T.W., et al. (2008). DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908-917.   DOI
19 Lagier-Tourenne, C. and Cleveland, D.W. (2009). Rethinking ALS: the FUS about TDP-43. Cell 136, 1001-1004.   DOI
20 Le Thomas, A., Rogers, A.K., Webster, A., Marinov, G.K., Liao, S.E., Perkins, E.M., Hur, J.K., Aravin, A.A., and Toth, K.F. (2013). Piwi induces piRNAguided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 27, 390-399.   DOI
21 Lee, D., Yang, H., Kim, J., Brady, S., Zdraljevic, S., Zamanian, M., Kim, H., Paik, Y.K., Kruglyak, L., Andersen, E.C., et al. (2017). The genetic basis of natural variation in a phoretic behavior. Nat. Commun. 8, 273.   DOI
22 Sapetschnig, A., Sarkies, P., Lehrbach, N.J., and Miska, E.A. (2015). Tertiary siRNAs mediate paramutation in C. elegans. PLoS Genet. 11, e1005078.   DOI
23 Roy, J., Sarkar, A., Parida, S., Ghosh, Z., and Mallick, B. (2017). Small RNA sequencing revealed dysregulated piRNAs in Alzheimer's disease and their probable role in pathogenesis. Mol. Biosyst. 13, 565-576.   DOI
24 Ruby, J.G., Jan, C., Player, C., Axtell, M.J., Lee, W., Nusbaum, C., Ge, H., and Bartel, D.P. (2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193-1207.   DOI
25 Saito, K., Sakaguchi, Y., Suzuki, T., Suzuki, T., Siomi, H., and Siomi, M.C. (2007). Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. Genes Dev. 21, 1603-1608.   DOI
26 Saxena, A., Tang, D., and Carninci, P. (2012). piRNAs warrant investigation in Rett syndrome: an omics perspective. Dis. Markers 33, 261-275.   DOI
27 Shen, E.Z., Chen, H., Ozturk, A.R., Tu, S., Shirayama, M., Tang, W., Ding, Y.H., Dai, S.Y., Weng, Z., and Mello, C.C. (2018). Identification of piRNA binding sites reveals the argonaute regulatory landscape of the C. elegans germline. Cell 172, 937-951.e18.   DOI
28 Shirayama, M., Seth, M., Lee, H.C., Gu, W., Ishidate, T., Conte, D., Jr., and Mello, C.C. (2012). piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65-77.   DOI
29 Sienski, G., Donertas, D., and Brennecke, J. (2012). Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151, 964-980.   DOI
30 Bartsch, D., Ghirardi, M., Skehel, P.A., Karl, K.A., Herder, S.P., Chen, M., Bailey, C.H., and Kandel, E.R. (1995). Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into longterm functional and structural change. Cell 83, 979-992.   DOI
31 Batista, P.J., Ruby, J.G., Claycomb, J.M., Chiang, R., Fahlgren, N., Kasschau, K.D., Chaves, D.A., Gu, W., Vasale, J.J., Duan, S., et al. (2008). PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67-78.   DOI
32 Belancio, V.P., Hedges, D.J., and Deininger, P. (2008). Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 18, 343-358.   DOI
33 Burton, N.O., Furuta, T., Webster, A.K., Kaplan, R.E., Baugh, L.R., Arur, S., and Horvitz, H.R. (2017). Insulin-like signalling to the maternal germline controls progeny response to osmotic stress. Nat. Cell Biol. 19, 252-257.   DOI
34 Bodea, G.O., McKelvey, E.G.Z., and Faulkner, G.J. (2018). Retrotransposoninduced mosaicism in the neural genome. Open Biol. 8, 180074.   DOI
35 Boskovic, A. and Rando, O.J. (2018). Transgenerational epigenetic inheritance. Annu. Rev. Genet. 52, 21-41.   DOI
36 Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103.   DOI
37 Carmell, M.A., Girard, A., van de Kant, H.J., Bourc'his, D., Bestor, T.H., de Rooij, D.G., and Hannon, G.J. (2007). MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503-514.   DOI
38 Carmell, M.A., Xuan, Z., Zhang, M.Q., and Hannon, G.J. (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733-2742.   DOI
39 Casier, K., Boivin, A., Carre, C., and Teysset, L. (2019a). Environmentallyinduced transgenerational epigenetic inheritance: implication of PIWI interacting RNAs. Cells 8, E1108.
40 Casier, K., Delmarre, V., Gueguen, N., Hermant, C., Viode, E., Vaury, C., Ronsseray, S., Brasset, E., Teysset, L., and Boivin, A. (2019b). Environmentally-induced epigenetic conversion of a piRNA cluster. Elife 8, e39842.   DOI
41 Cassada, R.C. and Russell, R.L. (1975). The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46, 326-342.   DOI
42 Li, X.Z., Roy, C.K., Dong, X., Bolcun-Filas, E., Wang, J., Han, B.W., Xu, J., Moore, M.J., Schimenti, J.C., Weng, Z., et al. (2013). An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50, 67-81.   DOI
43 Lee, E.J., Banerjee, S., Zhou, H., Jammalamadaka, A., Arcila, M., Manjunath, B.S., and Kosik, K.S. (2011a). Identification of piRNAs in the central nervous system. RNA 17, 1090-1099.   DOI
44 Lee, H., Choi, M.K., Lee, D., Kim, H.S., Hwang, H., Kim, H., Park, S., Paik, Y.K., and Lee, J. (2011b). Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat. Neurosci. 15, 107-112.   DOI
45 Leighton, L.J., Wei, W., Marshall, P.R., Ratnu, V.S., Li, X., Zajaczkowski, E.L., Spadaro, P.A., Khandelwal, N., Kumar, A., and Bredy, T.W. (2019). Disrupting the hippocampal Piwi pathway enhances contextual fear memory in mice. Neurobiol. Learn. Mem. 161, 202-209.   DOI
46 Lin, H. and Spradling, A.C. (1997). A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463-2476.   DOI
47 Moore, R.S., Kaletsky, R., and Murphy, C.T. (2019). Piwi/PRG-1 argonaute and TGF-beta mediate transgenerational learned pathogenic avoidance. Cell 177, 1827-1841.e12.   DOI
48 Muotri, A.R., Marchetto, M.C., Coufal, N.G., Oefner, R., Yeo, G., Nakashima, K., and Gage, F.H. (2010). L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443-446.   DOI
49 Nandi, S., Chandramohan, D., Fioriti, L., Melnick, A.M., Hebert, J.M., Mason, C.E., Rajasethupathy, P., and Kandel, E.R. (2016). Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc. Natl. Acad. Sci. U. S. A. 113, 12697-12702.   DOI
50 Sohn, E.J., Jo, Y.R., and Park, H.T. (2019). Downregulation MIWI-piRNA regulates the migration of Schwann cells in peripheral nerve injury. Biochem. Biophys. Res. Commun. 519, 605-612.   DOI
51 Stein, C.B., Genzor, P., Mitra, S., Elchert, A.R., Ipsaro, J.J., Benner, L., Sobti, S., Su, Y., Hammell, M., Joshua-Tor, L., et al. (2019). Decoding the 5' nucleotide bias of PIWI-interacting RNAs. Nat. Commun. 10, 828.   DOI
52 Sun, W., Samimi, H., Gamez, M., Zare, H., and Frost, B. (2018). Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 21, 1038-1048.   DOI
53 Tabara, H., Yigit, E., Siomi, H., and Mello, C.C. (2002). The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861-871.   DOI
54 Tang, W., Tu, S., Lee, H.C., Weng, Z., and Mello, C.C. (2016). The RNase PARN-1 trims piRNA 3' ends to promote transcriptome surveillance in C. elegans. Cell 164, 974-984.   DOI
55 Tolia, N.H. and Joshua-Tor, L. (2007). Slicer and the argonautes. Nat. Chem. Biol. 3, 36-43.   DOI
56 Toth, K.F., Pezic, D., Stuwe, E., and Webster, A. (2016). The piRNA pathway guards the germline genome against transposable elements. Adv. Exp. Med. Biol. 886, 51-77.   DOI
57 Vagin, V.V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., and Zamore, P.D. (2006). A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320-324.   DOI
58 Czech, B., Munafo, M., Ciabrelli, F., Eastwood, E.L., Fabry, M.H., Kneuss, E., and Hannon, G.J. (2018). piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131-157.   DOI
59 Cerutti, L., Mian, N., and Bateman, A. (2000). Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci. 25, 481-482.   DOI
60 Chen, L., Wang, Z., Ghosh-Roy, A., Hubert, T., Yan, D., O'Rourke, S., Bowerman, B., Wu, Z., Jin, Y., and Chisholm, A.D. (2011). Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron 71, 1043-1057.   DOI
61 Das, P.P., Bagijn, M.P., Goldstein, L.D., Woolford, J.R., Lehrbach, N.J., Sapetschnig, A., Buhecha, H.R., Gilchrist, M.J., Howe, K.L., Stark, R., et al. (2008). Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 31, 79-90.   DOI
62 De Fazio, S., Bartonicek, N., Di Giacomo, M., Abreu-Goodger, C., Sankar, A., Funaya, C., Antony, C., Moreira, P.N., Enright, A.J., and O'Carroll, D. (2011). The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 259-263.   DOI
63 de Vanssay, A., Bouge, A.L., Boivin, A., Hermant, C., Teysset, L., Delmarre, V., Antoniewski, C., and Ronsseray, S. (2012). Paramutation in Drosophila linked to emergence of a piRNA-producing locus. Nature 490, 112-115.   DOI
64 Deng, W. and Lin, H. (2002). Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819-830.   DOI
65 Dharap, A., Nakka, V.P., and Vemuganti, R. (2011). Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke 42, 1105-1109.   DOI
66 Parhad, S.S. and Theurkauf, W.E. (2019). Rapid evolution and conserved function of the piRNA pathway. Open Biol. 9, 180181.   DOI
67 Nix, P., Hammarlund, M., Hauth, L., Lachnit, M., Jorgensen, E.M., and Bastiani, M. (2014). Axon regeneration genes identified by RNAi screening in C. elegans. J. Neurosci. 34, 629-645.   DOI
68 Ohara, T., Sakaguchi, Y., Suzuki, T., Ueda, H., Miyauchi, K., and Suzuki, T. (2007). The 3' termini of mouse Piwi-interacting RNAs are 2'-O-methylated. Nat. Struct. Mol. Biol. 14, 349-350.   DOI
69 Ozata, D.M., Gainetdinov, I., Zoch, A., O'Carroll, D., and Zamore, P.D. (2019). PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89-108.   DOI
70 Peng, L., Zhang, F., Shang, R., Wang, X., Chen, J., Chou, J.J., Ma, J., Wu, L., and Huang, Y. (2018). Identification of substrates of the small RNA methyltransferase Hen1 in mouse spermatogonial stem cells and analysis of its methyl-transfer domain. J. Biol. Chem. 293, 9981-9994.   DOI
71 Perera, B.P.U., Tsai, Z.T., Colwell, M.L., Jones, T.R., Goodrich, J.M., Wang, K., Sartor, M.A., Faulk, C., and Dolinoy, D.C. (2019). Somatic expression of piRNA and associated machinery in the mouse identifies short, tissuespecific piRNA. Epigenetics 14, 504-521.   DOI
72 Perrat, P.N., DasGupta, S., Wang, J., Theurkauf, W., Weng, Z., Rosbash, M., and Waddell, S. (2013). Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340, 91-95.   DOI
73 Phay, M., Kim, H.H., and Yoo, S. (2018). Analysis of piRNA-like small noncoding RNAs present in axons of adult sensory neurons. Mol. Neurobiol. 55, 483-494.   DOI
74 Weick, E.M. and Miska, E.A. (2014). piRNAs: from biogenesis to function. Development 141, 3458-3471.   DOI
75 Wakisaka, K.T., Tanaka, R., Hirashima, T., Muraoka, Y., Azuma, Y., Yoshida, H., Tokuda, T., Asada, S., Suda, K., Ichiyanagi, K., et al. (2019). Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. Brain Res. 1708, 207-219.   DOI
76 Wang, G. and Reinke, V. (2008). A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr. Biol. 18, 861-867.   DOI
77 Wang, J., Zhang, P., Lu, Y., Li, Y., Zheng, Y., Kan, Y., Chen, R., and He, S. (2019). piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 47, D175-D180.   DOI
78 Weick, E.M., Sarkies, P., Silva, N., Chen, R.A., Moss, S.M., Cording, A.C., Ahringer, J., Martinez-Perez, E., and Miska, E.A. (2014). PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev. 28, 783-796.   DOI
79 Yu, T., Koppetsch, B.S., Pagliarani, S., Johnston, S., Silverstein, N.J., Luban, J., Chappell, K., Weng, Z., and Theurkauf, W.E. (2019). The piRNA response to retroviral invasion of the Koala genome. Cell 179, 632-643.e12.   DOI
80 Zhang, D., Tu, S., Stubna, M., Wu, W.S., Huang, W.C., Weng, Z., and Lee, H.C. (2018). The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 359, 587-592.   DOI
81 Zhao, M., Kim, J.R., van Bruggen, R., and Park, J. (2018). RNA-binding proteins in amyotrophic lateral sclerosis. Mol. Cells 41, 818-829.   DOI
82 Zhao, P.P., Yao, M.J., Chang, S.Y., Gou, L.T., Liu, M.F., Qiu, Z.L., and Yuan, X.B. (2015). Novel function of PIWIL1 in neuronal polarization and migration via regulation of microtubule-associated proteins. Mol. Brain 8, 39.   DOI
83 Frost, B., Hemberg, M., Lewis, J., and Feany, M.B. (2014). Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357-366.   DOI
84 Di Giacomo, M., Comazzetto, S., Saini, H., De Fazio, S., Carrieri, C., Morgan, M., Vasiliauskaite, L., Benes, V., Enright, A.J., and O'Carroll, D. (2013). Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol. Cell 50, 601-608.   DOI
85 Dias, B.G. and Ressler, K.J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89-96.   DOI
86 Erwin, J.A., Marchetto, M.C., and Gage, F.H. (2014). Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci. 15, 497-506.   DOI
87 Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, E., and Mansuy, I.M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667-669.   DOI
88 Ghosheh, Y., Seridi, L., Ryu, T., Takahashi, H., Orlando, V., Carninci, P., and Ravasi, T. (2016). Characterization of piRNAs across postnatal development in mouse brain. Sci. Rep. 6, 25039.   DOI
89 Girard, A., Sachidanandam, R., Hannon, G.J., and Carmell, M.A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199-202.   DOI
90 Gou, L.T., Dai, P., Yang, J.H., Xue, Y., Hu, Y.P., Zhou, Y., Kang, J.Y., Wang, X., Li, H., Hua, M.M., et al. (2014). Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 24, 680-700.   DOI
91 Rechavi, O., Houri-Ze'evi, L., Anava, S., Goh, W.S.S., Kerk, S.Y., Hannon, G.J., and Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277-287.   DOI
92 Posner, R., Toker, I.A., Antonova, O., Star, E., Anava, S., Azmon, E., Hendricks, M., Bracha, S., Gingold, H., and Rechavi, O. (2019). Neuronal small RNAs control behavior transgenerationally. Cell 177, 1814-1826.e15.   DOI
93 Qiu, W., Guo, X., Lin, X., Yang, Q., Zhang, W., Zhang, Y., Zuo, L., Zhu, Y., Li, C.R., Ma, C., et al. (2017). Transcriptome-wide piRNA profiling in human brains of Alzheimer's disease. Neurobiol. Aging 57, 170-177.   DOI
94 Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., and Kandel, E.R. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693-707.   DOI
95 Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C., and Sanchez Alvarado, A. (2005). SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327-1330.   DOI
96 Reuter, M., Berninger, P., Chuma, S., Shah, H., Hosokawa, M., Funaya, C., Antony, C., Sachidanandam, R., and Pillai, R.S. (2011). Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264-267.   DOI
97 Rojas-Rios, P. and Simonelig, M. (2018). piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 145, dev161786.   DOI
98 Rouget, C., Papin, C., Boureux, A., Meunier, A.C., Franco, B., Robine, N., Lai, E.C., Pelisson, A., and Simonelig, M. (2010). Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467, 1128-1132.   DOI