• Title/Summary/Keyword: epidermis

Search Result 794, Processing Time 0.024 seconds

Associations among plasma vitamin C, epidermal ceramide and clinical severity of atopic dermatitis

  • Shin, Jihye;Kim, You Jin;Kwon, Oran;Kim, Nack-In;Cho, Yunhi
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.398-403
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Atopic dermatitis (AD), a chronic inflammatory skin disease, is accompanied by disruption of the epidermal lipid barrier, of which ceramide (Cer) is the major component. Recently it was reported that vitamin C is essential for de novo synthesis of Cer in the epidermis and that the level of vitamin C in plasma is decreased in AD. The objective of this study was to determine the associations among clinical severity, vitamin C in either plasma or epidermis, and Cer in the epidermis of patients with AD. SUBJECTS/METHODS: A total of 17 patients (11 male and 6 female) aged 20-42 years were enrolled. The clinical severity of AD was assessed according to the SCORAD (SCORing Atopic Dermatitis) system. Levels of vitamin C were determined in plasma and biopsies of lesional epidermis. Levels of epidermal lipids, including Cer, were determined from tape-stripped lesional epidermis. RESULTS: The clinical severity of patients ranged between 0.1 and 45 (mild to severe AD) based on the SCORAD system. As the SCORAD score increased, the level of vitamin C in the plasma, but not in the epidermis, decreased, and levels of total Cer and Cer2, the major Cer species in the epidermis, also decreased. There was also a positive association between level of vitamin C in the plasma and level of total Cer in the epidermis. However, levels of epidermal total lipids including triglyceride, cholesterol, and free fatty acid (FFA) were not associated with either SCORAD score or level of vitamin C in the plasma of all subjects. CONCLUSIONS: As the clinical severity of AD increased, level of vitamin C in the plasma and level of epidermal Cer decreased, and there was a positive association between these two parameters, implying associations among plasma vitamin C, epidermal Cer, and the clinical severity of AD.

Mantle Ultrastructure of the Granular Ark, Tegillarca granosa (Bivalvia: Acridae) (꼬막(Tegillarca granosa) 외투막의 미세구조)

  • MA Kyung Hwa;LEE Jung Sick
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.270-275
    • /
    • 2003
  • Histochemical characteristic and ultrastructure of the mantle of the granular ark, Tegillarca granosa are described using light and electron microscopy. The mantle of the clam is composed of outer epidermis, connective tissue and inner epidermis. The simple epidermis consists of supporting cells, ciliated cells of the two types and secretory cells of three types. Connective tissue is composed of matrix, collagen fibers, muscular fibers and hemolymph sinus. The columnar supporting cell is covered with microvilli on the free surface. Ciliated cells are distributed in the inner epidermis with numerous cilia, microvilli and tubular mitochondria. Secretory cells could be classified into three types (A, B and C) with morphological features of the secretory granules. Type A secretory cells contains secretory granules with fibrous materials of high electron density Type B secretory cells are more abundant than the other cells, and contains secretory granules of membrane-bounded and high electron density. Secretory granules of the type C cells are divided into fibrous core layer and homogeneous peripheral layer. Type B secretory cells are abundant in the both epidermis of marginal mantle, while large number of type A and C secretory cells are evident in the outer epidermis of the central and umbonal mantle. This result showed that the outer and the inner epidermis of the mantle are related with shell formation and cleaning of the mantle cavity, respectively.

Histology of Skin of the Amphibious Fish, Periophthalmus modestus

  • Park, Jong-Young;Kim, Ik-Soo;Kim, So-Young
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.315-318
    • /
    • 2000
  • Structure of the skin in amphibious fish, Periophthalmus modestus, was described in relation to cutaneous respiration. The epidermis has no gland cell. The epidermis consists of three regions: outermost layer of one to five layers of flattened epithelial cells, middle layer of swollen epithelial cells instead of glandular cells and stratum germinativum of cuboidal cells. There are numerous blood capillaries in the outermost layer of the epidermis and diffusion distance between the blood of capillaries and the epidermis is about 1.4 Um. The middle layer of the epidermis appears to be a web-like structure due to the swollen epithelial cells. The stratum germinativum has a well-developed lymphatic space containing lymphocytes. There are numerous blood capillaries and elliptical area with acid mucopolysaccharides in stratum laxum of the dermis. The skin of Periophthalmus modestus may be an accessory respiratory organ for oxygen uptake during terrestrial or aquatic life.

  • PDF

The Relationship Between Stomatal Opening and Photosynthetic Activity of the Mesophyll in Commelina Communis L.

  • Lee, Joon-Sang
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1109-1117
    • /
    • 2006
  • To investigate the influence of the mesophyll cells on stomatal opening in response to white light, the segments of isolated epidermis were transferred on partly exposed mesophyll cells of a leaf and stomatal apertures were measured. Transferring the isolated epidermis on partly exposed mesophyll cells of a leaf caused a marked increase on stomatal apertures while stomata in isolated epidermis incubated in MES buffer hardly opened. Mesophyll infiltration with photosynthetic inhibitors (DCMU, DCCD, $NaN_3$) was performed to elucidate the correlation between stomatal apertures and the degree of photosynthetic activity. It was found that transferring the isolated epidermis on partly exposed mesophyll cells of a leaf caused an increase of stomatal apertures depending on the degree of photosynthetic activities. In $NaN_3$ infiltrated leaf discs, transferring the fresh isolated epidermis on partly exposed mesophyll cells of a leaf showed no significant effect, but a slight increase on stomatal apertures. Isolated epidermis alone did not respond to the light properly, but if it was closely contacted with mesophyil cells, the stomata regained the ability of the light response. Therefore, it could be suggested that stomatai apertures were related with the degree of photosynthetic activity in the mesophyll cells.

Histology and Morphometries of the Epidermis of the Fins and Sucking Disc of the Mudskipper, Periophthalmus modestus (Pisces, Gobiidae)

  • Park, Jong-Young;Kim, Ik-Soo;Lee, Yong-Joo;Kim, So-Young
    • Animal cells and systems
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 2004
  • The epidermis of the mudskipper, Periophthalmus modestus, consists of three layers- the outermost layer, middle layer and stratum germinativum. Extensive fine blood capillaries are present near the superficial layer of epidermis and outermost layer in five fins and a sucking disc. The diffusion distance between the vascular capillaries and the surface of epidermis ranged from 3.6 to 10.9${\mu}$m: 3.6 ${\mu}$m in the sucking disc, 10.9 ${\mu}$m in the anal fin and 4.6 to 5.0 ${\mu}$m in the two dorsal fins. Rate of the surface area of respiratory epithelium, the surface area of the fine blood capillaries occupied per surface area of epidermis in 0.1mm, is 3.7 to 4.4% in two dorsal fins and 1.1% in the anal fin. The middle layer is simpler in structure consisting of small or voluminous cells swollen by epidermal cells, and this layer appeared web-like. Well-developed lymphatic spaces containing lymphocytes existed in the stratum germinativum. The five fins and sucking disc had no epidermal glands.

Ultrastructure of the Mantle Epidermis in the Ark Shell, Scapharca broughtonii (Bivalvia: Acridae) (피조개, Scapharca broughtonii 외투막 상피층의 미세구조)

  • Lee, Jung-Sick
    • Applied Microscopy
    • /
    • v.32 no.3
    • /
    • pp.213-222
    • /
    • 2002
  • Histology and ultrastructure of the mantle epidermis in the ark shell, Scapharca broughtonii are described using light and electron microscopy. The mantle of the ark shell is composed of outer epidermis, connective tissue and inner epidermis. Both epidermis are simple and consists of supporting cells, ciliated cells and secretory cells. Connective tissue is composed of mainly collagen and muscle fibers. The supporting cells in the inner epidermis are usually columnar and covered with microvilli. The ciliated cell have cilia and microvilli on the free surface, and numerous tubular mitochondria are observed in the apical cytoplasm. Secretory cells are mainly observed in the outer epidermis, and it can be divided into four types of A, B, C and D with morphological features of the secretory granules. Type A cells of mucous cell are found in the marginal and central mantle. And these cells contains numerous secretory granules of non-bounded and low electron density. Type B cells contains numerous rough endoplasmic reticula, well-developed Golgi complex and secretory granules of membrane-bounded and high electron density. Secretory granules of type C cells are divided into fibrous core layer and homogeneous peripheral layer. Type D cells are found in the outer epidermis of the central and umbonal mantle. And secretory granules of these cells are divided into homogeneous core layer and granular peripheral layer. This results suggest that the outer and inner epidermis of the mantle are related with shell formation and cleaning of the mantle cavity, respectively.

Mucosubstance Histochemistry of the Epidermis in Yellowtail, Striped Beakperch, Brown Spotted Grouper, Sea Chub, and Multicolorfin Rainbowfish

  • Jeong, Gil-Nam;Jo, Un-Bock
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.183-189
    • /
    • 2007
  • To investigate the properties of mucosubstances of the epidermis in various teleostean species, conventional histochemical stainings were used on the skin in five species of order Perciformes, i. e., yellowtail, Seriota quinqueradiat, striped beakperch, Oplegnathus fasciatus, brown spotted grouper, Epinephelus chlorostigma, sea chub, Ditrema temmincki and multicolorfin rainbowfish, Halichoeres poecilopterus. The following methods were used: periodic acid Schiff (PAS), alcian blue (AB) pH at 2.5, AB pH at 1.0, AB pH at 2.5-PAS, AB pH at 1.0-PAS, aldehyde fuchsin (AF) pH at 1.7-AB pH at 2.5 and high iron diamine (HID)-AB pH at 2.5. The epidermis of all five species consisted of three layers: superficial, middle, and basal layer. The superficial layer was comprised of rather flattened cells. In particular, the outermost layer of striped beakperch and middle layer of sea chub consisted of mucus-secreting cells. Mucous cells, the unicellular glands, were found in epidermis but varied in number in different body regions and species. Although there was a slight difference in the amount in various species and body regions, the secretory contents of the mucous cells in the five teleostean species contained acidic mucopolysaccharides. In yellowtail, striped beakperch, and multicolorfin rainbowfish, the property of mucosubstances was identified as sialomucin, while it was sulphomucin in brown spotted grouper and sea chub.

Effect of Locally Applied Keratinase on Thickness of Rat Skin (국소도포한 각질분해효소가 흰쥐피부의 두께에 미치는 효과)

  • Hwang, Kun;Chang, Chung-Soon;Kim, Dae Joong;Kim, Sung;Joo, Han Seung;Lee, Seung Jin
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • The aim of this study is to elucidate the effect of keratinase on epidermis of rat skin. Twenty-five male Sprague-Dolly rats were used. The hair on the back were removed and $2{\times}2cm$ area was marked. The rats were divided five groups; 1) Control group(Co), 2) Cleansing gel group(Cl), 3) Cleansing gel+keratinase group, 4) Exfoliant gel group(Ex), and 5) Exfoliant gel+ keratinase group(Ex+K). The solutions were applied to the back area twice a day for five days. On fifth day, the skins were harvested, fixed and prepared for histologic sections. The thickness of keratin layer, living epidermis, dermis, and cell layer number of living epidermis were measured. In the group containing keratinase(Cl+K, Ex+K), the thickness of keratin layer and living layer were thinner than other groups. However, there were no significant differences of the cell layer number of living epidermis and thickness of the dermis among the five groups. We think the keratinase may have the effect thinning the keratin layer as well as the thickness of living epidermis, without effecting the living cell and dermal component. The keratinase containing soap may be of benefit to remove the excess keratin layers in human.

Histological study on the skin structure in two mudskippers, Periophthalmus waltoni and Boleophthalmus dussumieri in relation to their terrestrial life

  • Mehran Dorostghoal;Ashraf Jazayeri;Sara Ashiri
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.13.1-13.6
    • /
    • 2022
  • Microscopic structure of skin in two amphibious mudskipper fish; Boleophthalmus dussumieri Valenciennes, 1837 (B. dussumeri) and Periophthalmus waltoni Koumans, 1941 (P. waltoni) were investigated in relation to their lifestyle. The general structure of skin is the same among the two species. Epidermis in B. dussumeri was thicker significantly than P. waltoni. The dermal bulges were only well developed in the skin of B. dussumeri. Mucous cells were absent in the epidermis of P. waltoni but present in B. dussumeri. Both B. dussumeri and P. waltoni have well-developed swollen middle cells as a shared epidermal feature. The thickness of the middle cell layer of the epidermis in B. dussumeri was significantly greater than in P. waltoni. Capillaries in the dorsal and ventral parts of the body are more closely distributed to the epidermal surface in P. waltoni than in B. dussumeri. The diffusion distance in the dorsal epidermis of P. waltoni was less than that in the ventral epidermis of B. dussumeri. A comparative examination of the skin of mudskipper species suggests that, due to the more terrestrial lifestyle adopted by P. waltoni, the skin contributes more to respiration.

Habitats and Air Uptake Based on Analysis of Skin Structure of Two Korean Bullheads, Pseudobagrus brevicorpus and P. koreanus (Pisces; Bagridae}

  • Park, Jong-Young;Kim, Chi-Hong
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.155-160
    • /
    • 2007
  • The skin of the Korean bullheads, Pseudobagrus brevicorpus and P. koreanus, is composed of epidermis, dermis and subcutis. The epidermis has three layers, the outermost layer, middle layer and stratum germinativum. The epidermis consists of two types of gland cells, an unicellular mucous cell of sulfomucin and a large club cell having sometimes two nuclei. The epidermis has numerous intraepithelial blood vessels in P. brevicorpus but not at all in P. koreanus. Lymphatic spaces containing lymphocytes are well developed in mainly the stratum germinativum. The dermis lacks scales and consists mostly of bundles of coarse collagen fibers. The collagen bundles are arranged in parallel to each other in the dorsum and lateral region toward the dorsum, but vertically at intervals in the abdomen and lateral region toward the abdomen. Considering this unique skin structure, the two species are likely to exercise cutaneous respiration as a dual respiratory system to overcome hypoxic conditions which frequently occurs in their habitats.