• Title/Summary/Keyword: ephemeris

검색결과 138건 처리시간 0.023초

다위성체의 편대비행 형상유지 제어에 관한 연구 (A Study on Multiple Spacecraft Formation-keeping Control)

  • 노태수;이재규;정옥철
    • 한국항공우주학회지
    • /
    • 제33권10호
    • /
    • pp.51-59
    • /
    • 2005
  • 본 논문에서는 위성간 상대 궤도 운동과 최적화 기법에 근거한 다위성체 편대비행 형상 유지에 관한 연구 결과를 제시하였다. 편대를 이루는 위성간의 상대 운동은 궤도 압축 방법을 이용한 닫힌 형태의 궤도 전파기를 이용하여 분석하였고, 최적화 기법을 도입하여 편대 비행 형상을 유지하기 위한 각 위성의 궤도 기동 절차를 설계하였다. 예제로서 원형 편대 비행 제어 문제에 적용하였고 비선형 시뮬레이션 결과를 제시하였다.

Automated Geo-registration for Massive Satellite Image Processing

  • 허준;박완용;방수남
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 GIS/RS 공동 춘계학술대회
    • /
    • pp.345-349
    • /
    • 2005
  • Massive amount of satellite image processing such asglobal/continental-level analysis and monitoring requires automated and speedy georegistration. There could be two major automated approaches: (1) rigid mathematical modeling using sensor model and ephemeris data; (2) heuristic co-registration approach with respect to existing reference image. In case of ETM+, the accuracy of the first approach is known as RMSE 250m, which is far below requested accuracy level for most of satellite image processing. On the other hands, the second approach is to find identical points between new image and reference image and use heuristic regression model for registration. The latter shows better accuracy but has problems with expensive computation. To improve efficiency of the coregistration approach, the author proposed a pre-qualified matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with correlation coefficient. Throughout the pre-qualification approach, the computation time was significantly improved and make the registration accuracy is improved. A prototype was implemented and tested with the proposed algorithm. The performance test of 14 TM/ETM+ images in the U.S. showed: (1) average RMSE error of the approach was 0.47 dependent upon terrain and features; (2) the number average matching points were over 15,000; (3) the time complexity was 12 min per image with 3.2GHz Intel Pentium 4 and 1G Ram.

  • PDF

GPS를 이용한 서울대학교 전파천문대의 WGS84 좌표 결정 (The Determination of WGS84 coordinates for Seoul National University Radio Astronomy Observatory)

  • 조정호;박필호;박종욱;홍승수;구본철
    • 천문학논총
    • /
    • 제15권1호
    • /
    • pp.31-34
    • /
    • 2000
  • We determined the precise three dimensional WGS84 Coordinates and the sea level height of Seoul Radio Astronomy Observatory (SRAO). In this study, we performed the simultaneous GPS observations at SRAO and Seoul GPS Reference Station(SGRS) of Korea Astronomy Observatory(KAO) for 3.5 hours from 17KST on October 27, 1999. We employed two different antennas, i.e., chokering antenna at SGRS of KAO and L1/L2 compact with groundplane antenna at SRAO. But we employed same type of receivers, i.e., Trimble 4000SSI at both observing places. The observed data were processed by GPSURVEY 2.30 software of Trimble with L1/L2 ION Free technique and broadcasting ephemeris of GPS Satellites because of very short baseline between SGRS of KAO and SRAO. We determined WGS84 latitude, longitude, height and the sea level height of SRAO with $37^{\circ}\;27'\;15.'\;6846N\pm0.'\;0004,\;126^{\circ}\;57'\;19.'\;0727E\pm0.'\;0002,\;204.89m\pm0.02m,\;181.38m\pm0.17m$, respectively.

  • PDF

정밀절대측위(PPP)기법에 의한 GPS 기준점 좌표의 산정 (The Coordinates Computation of the GPS Base Station by Precise Point Positioning)

  • 이용창
    • 한국측량학회지
    • /
    • 제17권2호
    • /
    • pp.145-152
    • /
    • 1999
  • 제트추진연구소(JPL : Jet Propulsion Laboratory)에서는 매일 전세계에 분포된 정밀 측지용 GPS수신기의 광역망으로 부터 관측자료를 수집하고 분석하여 정밀한 GPS transmitter parameters (위성의 위치력 및 시계 보정값)를 산정하고 있으며 이를 이용한 자동화된 GPS 자료 해석 서비스를 제공하고 있다. 본 연구에서는 한측점의 2주파 GPS수신기로부터 획득한 위성관측자료를 E-mail 및 ftp(file transfer protocol)로 JPL의 주컴퓨터에 연결시켜 JPL의 정밀 GPS transmitter parameters 및 Gipsy/Oasis-II (GOA-II) s/w를 활용한 정밀절대측위(PPP : Precise Point Positioning)기법의 정밀도를 분석하고 PPP에 의한 GPS기준점 좌표의 산정 방안을 검토한 것이다. 검토결과, X, Y, Z 직교좌표계에서 수 cm급의 위치결정이 가능하였다.

  • PDF

TWO-COLOR VR CCD PHOTOMETRY OF OLD NOVA V603 AQUILAE

  • Andronov Ivan L.;Ostrova Nataliya I.;Kim, Yong-Gi;Burwitz V.
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권3호
    • /
    • pp.211-222
    • /
    • 2005
  • Results of 6 nights of CCD VR photometry of the nova-like variable V603 Aquilae (Nova Aquilae 1918) obtained at the Mallorcian 35-cm telescope in July 2004 are reported. The ephemeris for the superhump maximum is Max.HJD=2453213.60546(96)+0.14813(10)E. The waves with $3.^d9,\;1.^d4,\;0.^d135$ are statistically significant, which may be interpreted as the negative superhump-orbital, the beat periods (negative superhump- positive superhump) and the negative superhump with low amplitude, respectively. Another possible time-scale is $0.^d8,$ which has no coincidence with the beat periods. Quasi-periodic oscillations with an effective period of 18 minutes have been detected, which are close to 15.6 minutes reported by some authors. Their effective semi-amplitudes are $^m.045\;and\;0^m.051$ for V and R, respectively. This corresponds to the 0.12 mag excess in the color index V-R as compared with the mean color, which can be understood as the pulsed emission in the hotter inner parts of the accretion disk, similar to that observed in TT Ari and MV Lyr.

Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

  • Shin, Kihae;Oh, Hyungjik;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권1호
    • /
    • pp.37-44
    • /
    • 2016
  • This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

Long-Term Variation of the Spin Period of a Magnetic Cataclysmic Variable, MU Camelopardalis

  • Yun, A-Mi;Kim, Yong-Gi;Choi, Chul-Sung
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.9-12
    • /
    • 2011
  • Results of an analysis of 11 nights of R-filter CCD photometry data of an intermediate polar MU Camelopardalis (MU Cam) obtained at the Korean 1.0 m telescope at Mt. Lemmon are reported. After checking the spin period with our data, $P_{spin}=0.^d01373801(59)$, we compiled the reported data of maxima timing and an O-C diagram analysis has been carried out to understand the spin period variation. A significant spin period variation was detected, and fitting the O-C points to a cubic parabola led to an ephemeris of $BJD_{max}=2453682.4178(94)+0.0137380(13)E-2.07(55){\times}10^{-11}E^2+2.28(52){\times}10^{-15}E^3$. The torque experienced by the magnetic compact star accreting in a disk is estimated as ${\tau}{\approx}1.815{\times}10^{35}gcm^2/s^2$ in a simple approximation in order to show how important monitoring the period variation is. Thus we conclude that monitoring the long-term spin period variation will help to understand the physical condition of magnetic compact stars.

A Short-Term Prediction Method of the IGS RTS Clock Correction by using LSTM Network

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권4호
    • /
    • pp.209-214
    • /
    • 2019
  • Precise point positioning (PPP) requires precise orbit and clock products. International GNSS service (IGS) real-time service (RTS) data can be used in real-time for PPP, but it may not be possible to receive these corrections for a short time due to internet or hardware failure. In addition, the time required for IGS to combine RTS data from each analysis center results in a delay of about 30 seconds for the RTS data. Short-term orbit prediction can be possible because it includes the rate of correction, but the clock correction only provides bias. Thus, a short-term prediction model is needed to preidict RTS clock corrections. In this paper, we used a long short-term memory (LSTM) network to predict RTS clock correction for three minutes. The prediction accuracy of the LSTM was compared with that of the polynomial model. After applying the predicted clock corrections to the broadcast ephemeris, we performed PPP and analyzed the positioning accuracy. The LSTM network predicted the clock correction within 2 cm error, and the PPP accuracy is almost the same as received RTS data.

A Periodic Analysis of Sidereal Shifts for GPS Satellites and the Solar Wind Stream

  • Cho, Changhyun;Choi, Byung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권2호
    • /
    • pp.71-78
    • /
    • 2017
  • The sidereal day of a Global Positioning System (GPS) satellite was intended to equal one half of a sidereal day of the Earth. However, the sidereal day of GPS satellites has become unequal to one half of a sidereal day of the Earth. This is fundamentally caused by the non-sphericity of the Earth and the gravity of the Moon. The difference between sidereal days of GPS satellites and the Earth is known as a sidereal shift. The details surrounding sidereal shifts and their origins have yet to be fully understood. We calculated the periodicity of sidereal shifts for GPS satellites using broadcast ephemeris data. To conduct a periodic analysis of the sidereal shift, we employ the Lomb-Scargle periodogram method. It shows that the orbit periods of GPS satellites have small-amplitude perturbations with a 13.6-day period. In addition, we compare the GPS satellite orbit periods with the periodicity of geomagnetic indices and the solar wind parameters to identify the cause of the perturbations. Our results suggest that the solar wind stream might also affect the 13.6-day period of the sidereal shifts.

가상행성 섭동력을 고려한 긴 주기 GPS 위성궤도예측기법 (Long-Term GPS Satellite Orbit Prediction Scheme with Virtual Planet Perturbation)

  • 유승수;이정혁;한진희;지규인;김선용
    • 제어로봇시스템학회논문지
    • /
    • 제18권11호
    • /
    • pp.989-996
    • /
    • 2012
  • The purpose of this paper is to analyze GPS (Global Positioning System) satellite orbital mechanics, and then to propose a novel long-term GPS satellite orbit prediction scheme including virtual planet perturbation. The GPS orbital information is a necessary prerequisite to pinpointing the location of a GPS receiver. When a GPS receiver has been shut down for a long time, however, the time needed to fix it before its reuse is too long due to the long-standing GPS orbital information. To overcome this problem, the GPS orbital mechanics was studied, such as Newton's equation of motion for the GPS satellite, including the non-spherical Earth effect, the luni-solar attraction, and residual perturbations. The residual perturbations are modeled as a virtual planet using the least-square algorithm for a moment. Through the modeling of the virtual planet with the aforementioned orbital mechanics, a novel GPS orbit prediction scheme is proposed. The numerical results showed that the prediction error was dramatically reduced after the inclusion of virtual planet perturbation.