Browse > Article
http://dx.doi.org/10.11003/JPNT.2017.6.2.71

A Periodic Analysis of Sidereal Shifts for GPS Satellites and the Solar Wind Stream  

Cho, Changhyun (Space Geodesy Group, Korea Astronomy and Space Science Institute)
Choi, Byung-Kyu (Space Geodesy Group, Korea Astronomy and Space Science Institute)
Publication Information
Journal of Positioning, Navigation, and Timing / v.6, no.2, 2017 , pp. 71-78 More about this Journal
Abstract
The sidereal day of a Global Positioning System (GPS) satellite was intended to equal one half of a sidereal day of the Earth. However, the sidereal day of GPS satellites has become unequal to one half of a sidereal day of the Earth. This is fundamentally caused by the non-sphericity of the Earth and the gravity of the Moon. The difference between sidereal days of GPS satellites and the Earth is known as a sidereal shift. The details surrounding sidereal shifts and their origins have yet to be fully understood. We calculated the periodicity of sidereal shifts for GPS satellites using broadcast ephemeris data. To conduct a periodic analysis of the sidereal shift, we employ the Lomb-Scargle periodogram method. It shows that the orbit periods of GPS satellites have small-amplitude perturbations with a 13.6-day period. In addition, we compare the GPS satellite orbit periods with the periodicity of geomagnetic indices and the solar wind parameters to identify the cause of the perturbations. Our results suggest that the solar wind stream might also affect the 13.6-day period of the sidereal shifts.
Keywords
sidereal shift; period; GPS; orbit; solar wind stream;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agnew, D. C. & Larson, K. M. 2007, Finding the repeat times of the GPS constellation, GPS Solution, 11, 71-76. http://doi.org/10.1007/s10291-006-0038-4   DOI
2 Atkins, C. & Ziebart, M. 2016, Effectiveness of observationdomain sidereal filtering for GPS precise point positioning, GPS Solution, 20, 111-122. http://doi.org/10.1007/s10291-015-0473-1   DOI
3 Axelrad, P., Larson, K., Jones, B. 2005, Use of the Correct Satellite Repeat Period to Characterize and Reduce Site-Specific Multipath Errors, In Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA, pp.2638-2648
4 Bock, Y. 1991, Continuous monitoring of crustal deformation, GPS World, 2, 40-47
5 Choi, K., Bilich, A., Larson, K. M., & Axelrad, P. 2004, Modified sidereal filtering: Implications for high-rate GPS positioning, GRL, 31, L22608. http://doi.org/10.1029/2004GL021621   DOI
6 Emery, B. A., Richardson, I. G., Evans, D. S., Rich, F. J., & Wilson, G. R. 2011, Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora. Solar Physics, 274, 399-425. http://doi.org/10.1007/s11207-011-9758-x   DOI
7 Gang, L., Gang, L., Kai, T., Zhaosheng, N., Yu, Z., et al. 2012, Improvement of instantaneous positioning by spatial stacking and modified sidereal filtering methods with application to the 2008 Ms8.0 Wenchuan earthquake, Geodesy and Geodynamics, 3, 13-18. http://doi.org/10.3724/SP.J.1246.2012.00013   DOI
8 Genrich, J. F. & Bock, Y. 1992, Rapid resolution of crustal motion at short ranges with the global positioning system, JGR, 97, 3261-3269. http://doi.org/10.1029/91JB02997   DOI
9 Lee, L-C., Rocken, C., & Kursiniski, R. 2001, Applications of Constellation Observing System for Meteorology, Ionosphere & Climate (New York: Springer Science & Business Media)
10 Lou, Y., Zhang, W., Shi, C., & Liu, J. 2014, High-rate (1-Hz and 50-Hz) GPS seismology: Application to the 2013 Mw 6.6 Lushan earthquake, Journal of Asian Earth Sciences, 79, 426-431. http://doi.org/10.1016/j.jseaes.2013.10.016   DOI
11 Mursula, K. & Zieger, B. 1996, The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: The last three solar cycles, Journal of Geophysical Research: Space Physics, 101, 27077-27090. http://doi.org/10.1029/96JA02470   DOI
12 Seeber, G., Menge, F., Volksen, C., Wubbena, G., & Schmitz, M. 1998, Precise GPS Positioning Improvements by Reducing Antenna and Site Dependent Effects, In Advances in Positioning and Reference Frames, Springer, pp.237-224. http://doi.org/10.1007/978-3-662-03714-0_38   DOI
13 Pedatella, N. M. & Larson, K. M. 2010, Routine determination of the plasmapause based on COSMIC GPS total electron content observations of the midlatitude trough, Journal of Geophysical Research: Space Physics, 115, A09301. http://doi.org/10.1029/2010JA015265   DOI
14 Ragheb, A. E., Clarke, P. J., & Edwards, S. J. 2007, GPS sidereal filtering: coordinate- and carrier-phase-level strategies, Journal of Geodesy, 81, 325-335. http://doi.org/10.1007/s00190-006-0113-1   DOI
15 Schwahn, W. & Sohne, W. 2009, Modified Sidereal Filtering-Tool for the Analysis of High-Rate GPS Coordinate Time Series, Geodetic Reference Frames: IAG Symposium, Munich, Germany, 134, pp.219-224. http://doi.org/10.1007/978-3-642-00860-3_34   DOI
16 Weiss, J. P. 2007, Modeling and Characterization of Multipath in Global Navigation Satellite System Ranging Signals, PhD Dissertation, University of Colorado
17 Zhong, P., Ding, X., Yuan, L., Xu, Y., Kwok, K., et al. 2010, Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines, Journal of Geodesy, 84, 145-158. http://doi.org/10.1007/s00190-009-0352-z   DOI