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This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional 
Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal 
situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/
preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring 
countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit 
satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the 
observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, 
measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3–0.7 m, ranging capability 
of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. 
Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.
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1. INTRODUCTION

Satellite Navigation Systems (SNSs) are used widely for 

a variety of navigation services. While Global Navigation 

Satellite Systems (GNSSs) provide free commercial-level 

services around the world, some countries are developing 

their own Regional Navigation Satellite Systems (RNSSs), 

e.g., India (Indian Regional Navigation Satellite System, 

IRNSS), Japan (Japanese Regional Advanced Navigation 

Satellites, JRANS), and China (Beidou/COMPASS) (United 

Nations 2010). Such RNSSs usually cover non-global/limited 

areas and they are intended to provide an accurate local 

navigation service based on both the global and the regional 

systems under normal conditions, but also to provide a 

stand-alone/compensatory navigation service in abnormal 

situations when the GNSSs might be unavailable.

The Korean Regional Navigation Satellite System 

(KRNSS) is current at the basic/preliminary research stage. 

Comprising three Geostationary Orbit (GEO) and four 

Elliptical Inclined Geosynchronous Orbit (EIGSO) satellites 

as a candidate constellation, the KRNSS is intended to 

provide local navigation services for the region around the 

Korean Peninsula (Choi et al. 2013). Successful operation 

of an SNS requires precise Orbit Determination (OD). 

Thus, SNSs usually collect long-term observational data 

of navigation satellites at ground stations and perform 

post/batch process OD to determine the state vectors (i.e., 

positions and velocities). The state vectors are then converted 

into ephemeris data for the SNS, which are transmitted 

periodically to the navigation satellites from the ground 

stations. A study of the OD of the KRNSS under normal 

conditions has been undertaken by Choi (2014). However, in 

an abnormal situation, when ground stations cannot uplink/

upload the ephemeris data to the navigation satellites, the 

satellites must generate their own ephemeris data to provide 

a continuous navigation solution. In such circumstances, 

because of high memory requirements and computational 

loads, the post/batch process OD is unsuitable, but Real-
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Time Orbit Determination (RTOD) is appropriate for the 

sequential processing of the observational data.

The main objective of the current paper is to develop an 

RTOD algorithm for the navigation satellites of the future 

KRNSS in abnormal situations. The well-known Extended 

Kalman Filter (EKF) is used for real-time estimation, 

which includes fine-tuning the initial covariance matrix, 

measurement noise matrix, and process noise matrix. In an 

effort to maintain operation without connection to ground 

stations, relative distance ranging between the KRNSS 

satellites based on Inter-Satellite Ranging (ISR) is adopted 

as the observation model (Wolf 2000). Multi-faceted 

parametric studies show that OD precision is affected by 

important parameters such as the ISR precision, ranging 

distance capability, and observational time interval.

The remainder of this paper is organized as follows. The 

KRNSS is introduced briefly in Section 2. Section 3 deals 

with the observational model, dynamic model, and real-

time estimation theory for configuring the RTOD. Section 4 

presents the RTOD simulation program and the associated 

results. Section 5 concludes the discussion.

2. KOREAN REGIONAL NAVIGATION SATELLITE 
SYSTEM (KRNSS)

The KRNSS currently considers three GEO and four 

EIGSO satellites as the candidate constellation. Fig. 1 shows 

the ground tracks of the KRNSS satellites in the Earth-

Centered-Earth-Fixed coordinate system.

The orbits of the three GEO satellites are located at 80° E, 

127° E, and 180° E in consideration of geometrical visibility 

(Choi 2014). The orbits of the four EIGSO satellites are 

inclined at 41° to provide coverage of the Korean Peninsula 

for a large proportion of their periods (Choi et al. 2013). This 

constellation was designed to receive at least four navigation 

signals in South Korea at any one time. Table 1 shows the 

orbital characteristics of the KRNSS satellites.

3. REAL-TIME ORBIT DETERMINATION (RTOD) 
ALGORITHM

Typical OD algorithms require three principal components: 

measurement model, dynamic model, and estimation.

As the KRNSS is designed currently to operate only with 

domestic ground stations, it is subject to visibility limitations. 

In an effort to mitigate this geometrical constraint, relative 

distance ranging between satellites using ISR is employed 

(Wolf 2000; Choi 2014). In relative distance ranging between 

satellites, it is critical to measure the signal travel time, the 

accuracy of which is affected by a variety of sources of error 

(Wolf 2000). In this paper, the total error in the observational 

data (ranging precision) includes Gaussian random noise 

with 0.1–100 m magnitude to describe the satellite clock 

offsets, ionospheric delay, tropospheric delay, and multipath 

error (Wolf 2000):
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Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

� (1)

where Time
sat(RX)

 and Time
sat(TX)

 represent the reception and 

the transmission times of the signal, respectively.

In consideration of the altitude of the KRNSS satellites, 

their dynamical equations of motion incorporate the 

asymmetric gravitational field of the Earth, the third-

body perturbation of the Sun and the Moon, and the Solar 

Radiation Pressure (SRP):
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𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
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√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
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0 0 0
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� (2)

Table 1. Duration of the longitude drift from the different origins near 
domestic GEO satellites

Satellites
Semimajor 
Axis (km)

Eccentricity
Inclination 

(deg)
Argument of 
Perigee (deg)

EIGSO 1 42,164 0.075 41 270
EIGSO 2 42,164 0.075 41 270
EIGSO 3 42,164 0.075 41 270
EIGSO 4 42,164 0.075 41 270

GEO 1 42,164 0 0 undefined
GEO 2 42,164 0 0 undefined
GEO 3 42,164 0 0 undefined

Fig. 1. Ground tracks of the Korean Regional Navigation Satellite System 
(KRNSS).
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the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 
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√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2
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√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
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]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  
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where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
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where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 
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√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛
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Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  
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In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
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where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
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The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
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where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
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Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  
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where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
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where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
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where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
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Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  
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matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

), and the state transition matrix  
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where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
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𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 
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[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
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where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
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where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
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2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1
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𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
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Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  
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√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

) and  

the covariance matrix (

 

3 
 

 
Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

) via the following equations 

(Brown & Hwang 1997):

	

 

3 
 

 
Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

�  (3)
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Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

�  (4)

	

 

3 
 

 
Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

�  (5)

where Q represents the process noise matrix.

The predicted state vector (

 

3 
 

 
Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

) and covariance matrix 

(
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Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

) are then corrected to the state vector (

 

3 
 

 
Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

) and the 

covariance matrix (

 

3 
 

 
Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

) by the following equations:

	

 

3 
 

 
Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  
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Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  
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Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
and the state transition matrix (Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)) are used to predict the state vector (𝑋̅𝑋𝑘𝑘+1) and the 
covariance matrix (𝑃̅𝑃𝑘𝑘+1) via the following equations (Brown & Hwang 1997): 

 
𝑋𝑋 = [𝑥𝑥  𝑦𝑦  𝑧𝑧  𝑥̇𝑥  𝑦̇𝑦  𝑧̇𝑧]𝑇𝑇                                 (3) 

 𝑋̅𝑋𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) 𝑋̂𝑋𝑘𝑘                                (4) 
𝑃̅𝑃𝑘𝑘+1 = Φ(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘)𝑃̂𝑃𝑘𝑘 Φ𝑇𝑇(𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘) + 𝑄𝑄                       (5) 

 
where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
vector (𝑋̂𝑋𝑘𝑘+1) and the covariance matrix (𝑃̂𝑃𝑘𝑘+1) by the following equations: 

 
𝐾𝐾𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 𝐻𝐻𝑇𝑇

𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
𝑘𝑘+1 +  R𝑘𝑘+1]−1                 (6) 

𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 

[
 
 
 
 

𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

0 0 0
]
 
 
 
 
   (9)

 
Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  

� (8)

where
 

Here, K
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 is the Kalman gain, y
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 is the observational 

data, and R is the measurement noise matrix (Zarchan & 

Musoff 2000). Symbol ρ represents the relative distance 

between satellites, [ x
n
  y

n
  z

n
] represents the coordinates of 

the satellite, and subscript n is the number of observational 

data. H
k+1

 is the partial derivative of the measurement 

function with respect to the state vector, which is determined 

numerically. 

4. ORBIT DETERMINATION (OD) SIMULATIONS 
AND RESULTS

Simulations are conducted to identify the requirements 

necessary to achieve meter-level accuracy of RTOD. The 

time span of the simulation is fixed at 25 hr in consideration 

of the orbital period of the EIGSO satellites. The RTOD 

error at each time step is calculated as the distance between 

the actual locations of the navigation satellites and their 

positions estimated by EKF. The RTOD accuracy is defined 

as the Root Mean Square (RMS) over the entire duration of 

the simulation. For comparative analysis, the true positions 

of the satellites are generated artificially by propagating the 

dynamic equations of motion from the initial states without 

any errors.

4.1 EKF Matrices Optimization

The EKF algorithm is first optimized by fine-tuning the 

covariance matrix, measurement noise matrix, and process 

noise matrix based on their physical meanings.

Table 2. Model and parameters in the dynamic model

Model / Parameter Description References
ECI Frame J2000 (Tapley et al. 2004)

Aspherical Earth Gravity JGM3 (Tapley et al. 1996)
Planetary Ephemeris Astronomical Almanac (Seidelmann 2006)
Precession/Nutation IAU 1976 (Seidelmann 2006)

Solar Radiation Pressure 
Reflectivity Coefficient

Cr : 1.3

Satellite Spec’
Cross section : 4.81m2

Mass : 1,465 kg

GPS block IIF
(Los Angeles Air Force 

Base 2014)
Numerical Integration Runge Kutta 45 ODE45, MATLAB
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Distance = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇)) × (Speed of light)               (1) 

 
where  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅)  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇) represent the reception and the transmission times of the 
signal, respectively. 

In consideration of the altitude of the KRNSS satellites, their dynamical equations of motion 
incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
 

𝑟̈𝑟 = − 𝜇𝜇𝐸𝐸
𝑟𝑟3 𝑟𝑟 + 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 + 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆                           (2) 

 
where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
the Moon, and 𝑎⃑𝑎𝑆𝑆𝑆𝑆𝑆𝑆 is the perturbation due to SRP (Vallado & McClain 2007). Table 2 displays the 
important parameter settings of the dynamics used in the simulations. 

The state vectors are estimated using the EKF algorithm in real time (Kalman 1960), which is 
composed mainly of the predictor and the corrector. The state vector (𝑋̂𝑋𝑘𝑘), the covariance matrix (𝑃̂𝑃𝑘𝑘), 
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where Q represents the process noise matrix. 

The predicted state vector (𝑋̅𝑋𝑘𝑘+1) and covariance matrix (𝑃̅𝑃𝑘𝑘+1) are then corrected to the state 
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𝑘𝑘+1 [𝐻𝐻𝑘𝑘+1𝑃̅𝑃𝑘𝑘+1𝐻𝐻𝑇𝑇
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where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 
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𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2
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√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2
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Here, 𝐾𝐾𝑘𝑘+1 is the Kalman gain, 𝑦𝑦𝑘𝑘+1 is the observational data, and 𝑅𝑅 is the measurement noise 

matrix (Zarchan & Musoff 2000). Symbol 𝜌𝜌  represents the relative distance between satellites, 
[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
data. 𝐻𝐻𝑘𝑘+1 is the partial derivative of the measurement function with respect to the state vector, 
which is determined numerically.  
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incorporate the asymmetric gravitational field of the Earth, the third-body perturbation of the Sun and 
the Moon, and the solar radiation pressure (SRP): 
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where 𝑟𝑟 is the position vector, 𝜇𝜇𝐸𝐸 is the gravitational constant of the Earth, 𝑎⃑𝑎𝑔𝑔𝑔𝑔𝑔𝑔 is the asymmetric 
gravitational field perturbation of the Earth, 𝑎⃑𝑎3𝑟𝑟𝑟𝑟 is the third-body perturbation due to the Sun and 
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𝑃̂𝑃𝑘𝑘+1 = 𝑃̅𝑃𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1 𝐻𝐻𝑘𝑘+1 𝑃̅𝑃𝑘𝑘+1                           (7) 
𝑋̂𝑋𝑘𝑘+1 = 𝑋̅𝑋𝑘𝑘+1 + 𝐾𝐾𝑘𝑘+1 [𝑦𝑦𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑋̅𝑋𝑘𝑘+1] (8) 

where 𝐻𝐻𝑘𝑘+1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 
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𝑥𝑥−𝑥𝑥1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑦𝑦−𝑦𝑦1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

𝑧𝑧−𝑧𝑧1

√(𝑥𝑥−𝑥𝑥1)2+(𝑦𝑦−𝑦𝑦1)
2+(𝑧𝑧−𝑧𝑧1)2

0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥−𝑥𝑥𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑦𝑦−𝑦𝑦𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
2+(𝑧𝑧−𝑧𝑧𝑛𝑛)2

𝑧𝑧−𝑧𝑧𝑛𝑛

√(𝑥𝑥−𝑥𝑥𝑛𝑛)2+(𝑦𝑦−𝑦𝑦𝑛𝑛)
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0 0 0
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[𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛] represents the coordinates of the satellite, and subscript n is the number of observational 
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which is determined numerically.  
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The covariance matrix in EKF physically represents the 

magnitude of the errors included in the state vector. It is 

used mainly for calculating the Kalman gain (Zarchan & 

Musoff 2000). A large magnitude of the covariance matrix 

implies large errors in the estimated state vector. When 

estimating the state vector at the subsequent time step, a 

relatively bigger covariance matrix (bigger than the ranging 

accuracy) yields a larger Kalman gain, and the observational 

data become more influential on the state vectors of the 

navigation satellites. While the covariance matrix is updated 

automatically in the EKF algorithm, its initial value (the 

initial covariance matrix) must be selected carefully by the 

users. To analyze the sensitivity, the initial covariance matrix 

is tuned while the ranging accuracy is fixed at 1 m. Fig. 2 

shows the strong relation between the RTOD error at the 

initial time step and the initial covariance matrix. When the 

order of the initial covariance matrix component is equal 

to or is one degree smaller than that of the initial position 

error, the position converges at the first time step, which is 

consistent with its physical meaning. Fig. 2 also confirms 

that if the diagonal elements of the initial covariance matrix 

are (103)2, the positional error at the first time step converges 

to a constant value, regardless of any initial error.

The measurement noise matrix represents the magnitude 

of the error included in the observational data. It is used 

principally for computing the Kalman gain (Zarchan & 

Musoff 2000). The physical characteristics of the matrix 

are related to the weights of the observational model. In 

an attempt to establish an appropriate measurement noise 

matrix, the ranging precision is varied from 0.1–100 m, while 

the total observation time is fixed at 25 hr. In Fig. 3, when 

the order of the measurement noise matrix component is 1–2 

orders higher than that of the ranging precision, the RTOD 

accuracy represents the best accuracy stably, which also 

reflects its physical meaning. As a result, the measurement 

noise matrix is determined using the square of ranging 

precision.

The process noise matrix considers the unexpected 

errors of the developed system and the omitted term of 

the equations of motion. When computing the covariance 

matrix, a larger process noise matrix yields a bigger 

covariance matrix and eventually, the Kalman gain becomes 

Fig. 2. Magnitude of position error at the 1st time step vs. initial covariance matrix (EIGSO 1).

Fig. 3. RTOD accuracy vs. measurement noise matrix (EIGSO 1).
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greater (Zarchan & Musoff 2000). As this paper considers 

simulations using virtual data, it is not simple to determine 

the process noise matrix. In this work, simulations are 

performed with a specific range of process noise matrices 

that do not lead to a singularity of the EKF. In the simulation 

process of determining the process noise matrix, the 

ranging precision is varied from 0.1–100 m, while the 

total observation time is fixed at 25 hr. In Fig. 4, when the 

magnitude of the process noise matrix component is the 

same as or is bigger than the ranging precision, the RTOD 

accuracy is worst. In order to consider the worst-case 

scenario and to obtain realistic results, the component of 

process noise matrix is determined empirically using by the 

same magnitude of ranging precision.

4.1 OD Results

4.2.1 OD Accuracy with Ranging Precision

Simulations are performed to identify the requirements 

necessary to achieve meter-level accuracy of RTOD. Fig. 5 

presents the RTOD accuracy of the KRNSS satellites versus 

ranging precision, which shows that ranging precision of 

0.3–0.7 m is essential to achieve 1-meter-level of RTOD 

accuracies. The linearity of RTOD accuracy with regard to 

the ranging precision confirms their strong relation. While 

the RTOD accuracy of the GEO 1 satellite, located at the 

center of the KRNSS satellite group, shows the best accuracy, 

the GEO 2 and 3 satellites, located in the outermost 

positions, show the worst; the EIGSO satellites maintain 

similar accuracies to each other. These results indicate there 

should be a strong relationship between RTOD accuracy 

and the geometrical configuration of the satellites.

4.2.2  OD Accuracy and PDOP

In an effort to scrutinize the relationship between RTOD 

accuracy and the geometrical configuration of the satellites, 

the Dilution Of Precision (DOP), which is an indicator of the 

geometrical configuration, is calculated (Hofmann-Wellenhof 

et al. 2001). In an SNS, the numeral 6 represents good DOP. 

Generally, the DOP is calculated based on the positions of the 

navigation satellites with respect to the location of the service 

receiver. However, here, using ISR to perform the RTOD, 

the DOP of a particular satellite is calculated based on the 

positions of the other navigation satellites. This DOP is called 

the inversed GNSS DOP (Choi et al. 2014). As the clock error 

is not considered separately in the simulation, the positional 

Fig. 4. RTOD accuracy vs. process noise matrix (EIGSO 1).

Fig. 5. RTOD accuracy vs. ranging precision.
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DOP (PDOP) is computed instead of the geometrical DOP. 

The PDOP value of each satellite is calculated using the RMS 

method over the entire orbital period.

It is worth noting that the values of PDOP multiplied 

by the ranging precision in Table 3 are very close to the 

RTOD accuracies. This is consistent with the results of 

Choi et al. (2014), showing that the positional accuracy 

can be obtained by the geometrical DOP multiplied by the 

observational precision between the satellite and receiver 

in the SNS. Conversely, when the magnitude of the PDOP 

is <6 (at least) and it maintains nearly the same magnitude 

without large variation, the RTOD accuracy can be 

estimated approximately through the PDOP, which could be 

used when designing orbital phases of an SNS.

4.2.3  Initial Positional Error of KRNSS Satellites

The initial positions of satellites are often obtained by 

the Two-Line Element (TLE) sets provided by the Joint 

Space Operations Center (JSpOC). However, TLEs contain 

significant errors that can be up to 10–30 km for GEO 

satellites (Kim et al. 2010). To analyze the effects of initial 

positional errors, it is varied between 0–10 km, while the 

ranging accuracy is fixed at 1 m because this study adopts 

0.45 m ranging precision of the ISR equipment of GPS IIR 

(Xu et al. 2012). Fig. 6 shows there is no significant change 

in RTOD accuracy regardless of the variation of initial 

positional errors. This is because the initial covariance 

matrix is selected appropriately and the ranging precision is 

highly accurate compared with the initial positional errors.

4.2.4  OD Accuracy and Limitation on Relative Ranging

As relative ranging between satellites is the only 

observational data in the current analysis, it is significant 

to understand the effects of the variation of the relative 

distance between satellites. During one orbital period, 

the minimum relative distance between the EIGSO 2 and 

3 satellites is about 3,100 km, and the maximum relative 

distance between the GEO 2 and 3 satellites is about 64,600 

km. Hence, the KRNSS must be designed to be capable 

of covering a range of about 65,000 km. According to 

Toyoshima (2005), the current ISR technology can measure 

the distance between the Earth and the Moon. If the 

maximum observational range is restricted, the number 

of observational data decreases and consequently, the 

RTOD accuracy reduces. Fig. 7 shows the distribution of 

observational data with respect to the relative distance 

between satellites during one orbital period. It can be seen 

in Fig. 7 that a ranging capability of at least 65,000 km is 

required to maintain the meter-level accuracy of RTOD.

4.2.5  OD Accuracy and Observation Time Interval

All the simulations have been conducted with 10 min 

observational time intervals. Here, the observational time 

interval is varied from 1–60 min in order to study its relation 

with RTOD accuracy. While Fig. 8 shows no consistent 

tendency between RTOD accuracy against observational 

time interval, the fluctuation of the RTOD accuracies does 

increase when the observational time interval is >20 min. 

Table 3. PDOP and RTOD accuracy by ranging precision

Satellites
Ranging Precision

PDOP0.100 m 1.000 m 10.000 m
OD Accuracy OD Accuracy OD Accuracy

EIGSO 1 0.211 m 2.116 m 21.153 m 2.120
EIGSO 2 0.210 m 2.096 m 20.957 m 2.122
EIGSO 3 0.214 m 2.146 m 21.455 m 2.119
EIGSO 4 0.230 m 2.304 m 23.047 m 2.127

GEO 1 0.154 m 1.548 m 15.491 m 1.543
GEO 2 0.285 m 2.857 m 28.560 m 2.834
GEO 3 0.309 m 3.091 m 30.918 m 3.100

Fig. 6. RTOD accuracy vs. initial positional error.
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Fig. 8. RTOD accuracy vs. observational time interval.

Hence, the observational time interval of the KRNSS should 

be <20 min for stable RTOD accuracy.

5. CONCLUSIONS

RTOD has been conducted to produce ephemeris data 

for KRNSS navigation satellites under the assumption of an 

abnormal situation in which communication between the 

navigation satellites and the ground station is unavailable. 

Relative distance ranging between the satellites using ISR 

was adopted, and the EKF algorithm was employed to 

investigate the requirements necessary to achieve meter-

level accuracy of RTOD. The fine-tuning process was first 

performed for the key matrices of the EKF (initial covariance 

matrix, measurement noise matrix, and process noise 

matrix) based on their physical meanings. According to 

the simulations, ranging precision of 0.3–0.7 m is required 

to obtain RTOD accuracy to within 1 m. The relevance 

between the geometrical configuration (DOP) and RTOD 

accuracy makes it possible to estimate the RTOD accuracy 

from the DOP (without actually performing RTOD). A 

ranging capability of at least 65,000 km and an observational 

time interval of <20 min are also required to maintain the 

required RTOD accuracy.
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