• 제목/요약/키워드: enzyme stability

검색결과 669건 처리시간 0.028초

Increased mRNA Stability and Expression Level of Croceibacter atlanticus Lipase Gene Developed through Molecular Evolution Process

  • Jeong, Han Byeol;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.882-889
    • /
    • 2021
  • In order to use an enzyme industrially, it is necessary to increase the activity of the enzyme and optimize the reaction characteristics through molecular evolution techniques. We used the error-prone PCR method to improve the reaction characteristics of LipCA lipase discovered in Antarctic Croceibacter atlanticus. Recombinant Escherichia coli colonies showing large halo zones were selected in tributyrin-containing medium. The lipase activity of one mutant strain (M3-1) was significantly increased, compared to the wild-type (WT) strain. M3-1 strain produced about three times more lipase enzyme than did WT strain. After confirming the nucleotide sequence of the M3-1 gene to be different from that of the WT gene by four bases (73, 381, 756, and 822), the secondary structures of WT and M3-1 mRNA were predicted and compared by RNAfold web program. Compared to the mean free energy (MFE) of WT mRNA, that of M3-1 mRNA was lowered by 4.4 kcal/mol, and the MFE value was significantly lowered by mutations of bases 73 and 756. Site-directed mutagenesis was performed to find out which of the four base mutations actually affected the enzyme expression level. Among them, one mutant enzyme production decreased as WT enzyme production when the base 73 was changed (T→ C). These results show that one base change at position 73 can significantly affect protein expression level, and demonstrate that changing the mRNA sequence can increase the stability of mRNA, and can increase the production of foreign protein in E. coli.

Purification and Characterization of an Alkali-Thermostable Lipase from Thermophilic Anoxybacillus flavithermus HBB 134

  • Bakir, Zehra Burcu;Metin, Kubilay
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1087-1097
    • /
    • 2016
  • An intracellular lipase from Anoxybacillus flavithermus HBB 134 was purified to 7.4-fold. The molecular mass of the enzyme was found to be about 64 kDa. The maximum activity of the enzyme was at pH 9.0 and 50℃. The enzyme was stable between pH 6.0 and 11.0 at 25℃, 40℃, and 50℃ for 24 h. The Km and Vmax of the enzyme for pNPL substrate were determined as 0.084 mM and 500 U/mg, respectively. Glycerol, sorbitol, and mannitol enhanced the enzyme thermostability. The enzyme was found to be highly stable against acetone, ethyl acetate, and diethyl ether. The presence of PMSF, NBS, DTT and β-mercaptoethanol inhibited the enzyme activity. Hg2+, Fe3+, Pb2+, Al3+, and Zn2+ strongly inhibited the enzyme whereas Li+, Na+, K+, and NH4+ slightly activated it. At least 60% of the enzyme activity and stability were retained against sodium deoxycholate, sodium taurocholate, n-octyl-β-D-glucopyranoside, and CHAPS. The presence of 1% Triton X-100 caused about 34% increase in the enzyme activity. The enzyme is thought to be a true lipase since it has preferred the long-chain triacylglycerols. The lipase of HBB 134 cleaved triolein at the 1- or 3-position.

Purification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus barcinonensis

  • Asha, Balachandrababu Malini;Revathi, Masilamani;Yadav, Amit;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1501-1509
    • /
    • 2012
  • A novel bacterial strain, MG7, with high cellulase activity was isolated and identified by morphological characteristics and molecular phylogeny analysis as Paenibacillus barcinonensis. Maximum production of cellulase by MG7 was observed at pH 7.0 and $35^{\circ}C$. The enzyme was purified with a specific activity of 16.88 U/mg, the cellulase activity was observed in a zymogram, and its molecular mass (58.6 kDa) was confirmed by SDS-PAGE. The purified enzyme showed maximum activity at pH 6.0 and $65^{\circ}C$ and degraded cellulosic substrates such as carboxy methyl cellulose (CMC), Avicel, filter paper, and ${\beta}$-glucan. The enzyme showed stability with 0.5% concentration of various surfactants. The $K_m$ and $V_{max}$ of cellulase for CMC and Avicel were found to be 0.459mg/ml and 10.46mg/ml/h, and 1.01 mg/ml and 10.0 mg/ml/h, respectively. The high catalytic activity and its stability to temperature, pH, surfactants, and metal ions indicated that the cellulase enzyme by MG7 is a good candidate for biotechnological applications.

유기용매내성세균 Bacillus sp. BCNU 5006의 유용성 (Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5006)

  • 최혜정;황민정;김봉수;정영기;주우홍
    • KSBB Journal
    • /
    • 제27권1호
    • /
    • pp.61-66
    • /
    • 2012
  • In the screening process of organic solvent tolerant bacteria showing good growth in media containing several kinds of organic solvents, one strain was isolated and identified as Bacillus sp. BCNU 5006. The strain was able to tolerate many organic solvents including benzene, toluene, xylene, octane, dodecane, butanol and ethylbenzene. Likewise, it could also utilize these solvents as the sole source of carbon with significant enzyme production. The lipolytic enzyme stability of Bacillus sp. BCNU 5006 was studied in the presence of several kinds of solvents at a 25% (v/v) concentration. The highest enzyme stability was observed in the presence of octane (107%), followed by ethylbenzene (88%), decane (86%), and chloroform (85%). Especially, BCNU 5006 lipase was determined to be more stable than immobilized enzyme (Novozyme 435) in the presence of octane, chloroform and xylene. This organic solvent tolerant Bacillus sp. BCNU 5006 could be expected as a potential bioremediation agent and biocatalyst for biodegradation and provide on organic-solvent-based enzymatic synthetic method in industrial chemical processes.

인삼사포닌 및 인삼수용성 추출물이 비둘기 가슴근육으로부터 분리된 Malate Dehydrogenase에 미치는 안정화효과 (Stabilizing Effect of Ginseng Saponin and Water Extract on Malate Dehydrogenase from Pigeon Breast Muscle)

  • 김두하;신문희;홍순근
    • Journal of Ginseng Research
    • /
    • 제7권1호
    • /
    • pp.88-93
    • /
    • 1983
  • Studies were carried out to elucidate the protein stabilizing effect of ginseng. Malate dehydrogenase (EC 1.1.1.37) was used as a protein and the rate constant of the enzyme inactivation was determined under the heat denaturation condition. There was an optimum pH for the enzyme stability, the rate constant of the enzyme inactivation was minimum at BH 8.8. The rate constant was increased at lower and higher pH regions than the optimum pH. The inactivation reaction followed the Arrehnius law and the activation energy was measured as 36.8kcal/mole. The reaction rate was not affected by the enzyme concentration and thus it was assumed to be unimolecular first order reaction. The water extract of red ginseng decreased the rate constant of Malate dehydrogenate under heat inactivation condition to stabilize the enzyme activity. Purified ginseng saponin also stabilized the enzyme against heat inactivation.

  • PDF

실리카 코팅된 자성 나노입자로의 효소 고정화에 사용된 작용기가 리파아제의 활성과 안정성에 미치는 영향 (Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group)

  • 이혜린;김문일;홍상은;최재영;김영민;윤국로;이승호;하성호
    • 분석과학
    • /
    • 제29권3호
    • /
    • pp.105-113
    • /
    • 2016
  • 고정화 지지체로 사용된 실리카 나노입자와 실리카 코팅된 자성 나노입자에 작용기를 부착시켜 기능성을 부가한 후 효소인 리파아제를 고정화하여 리파아제의 안정성을 향상시키고자 연구를 수행하였다. 지지체에 부착하는 작용기가 고정화된 효소의 활성과 안정성에 미치는 영향도 살펴보았다. 실리카 나노입자와 실리카 코팅된 자성 나노입자에 부착한 작용기인 epoxy group과 amine group은 glycidyl methacrylate과 aminopropyl triethoxysilane을 통해 실리카 나노입자와 실리카 코팅된 자성 나노입자 표면에 각각 부착하였다. 작용기가 부착된 실리카 나노입자와 실리카 코팅된 자성 나노입자에 고정화한 Candida rugosa lipase는 자유효소에 비해 초기반응속도는 다소 낮았지만, 3 회 재사용한 후 측정한 활성이 최초 활성 대비 92 % 이상의 활성을 유지하였다. 또한, 실리카 코팅된 자성 나노입자에 glutaraldehyde를 이용한 cross-linked enzyme aggregate (CLEA) 방법과 공유결합법을 통해 라파아제를 각각 고정화한 연구를 수행한 결과, 실리카 나노입자와 실리카 코팅된 자성 나노입자에 CLEA 방법과 공유결합법으로 각각 고정화한 Candida rugosa lipase는 자유효소에 비해 초기반응속도 뿐만 아니라 최종 활성도 높았고, 5 회 재사용한 후 측정한 활성이 최초 활성 대비 73 % 이상의 활성을 유지하였다.

Streptomyces subrutilus P5의 천연 Fe superoxide dismutase와 N-말단 6xHis-태그가 결합된 Fe superoxide dismutase의 활성비교 (Comparison of enzyme activities of the native and N-terminal 6xHis-tagged Fe supreoxide dismutase from Streptomyces subrutilus P5)

  • 박중호;김재헌
    • 미생물학회지
    • /
    • 제52권2호
    • /
    • pp.230-235
    • /
    • 2016
  • 본 연구는 Streptomyces subrutilus P5의 천연 Fe superoxide dismutase (FeSOD)와 유전자 재조합 기술로 생산된 6xHis-태그가 결합된 Fe superoxide dismutase (6xHis- FeSOD)의 활성을 비교하여 6xHis-태그의 효소에 대한 영향을 알아보기 위하여 수행되었다. 두 효소 모두 최적 pH는 7로 동일하였으나 6xHis-태그에 의해서 pH 범위는 축소되었다. 천연 효소는 pH 4-9의 범위에서 안정성을 보인 반면 6xHis-FeSOD는 pH 9에서 안정성이 상실되었다. 두 효소의 최적 온도는 차이가 없으나 열 안정성에 있어서는 천연 효소는 $40^{\circ}C$ 이하에서 720분까지 안정성을 유지하였으나 6xHis-FeSOD는 $20^{\circ}C$에서도 360분 이내에 활성을 잃는 것으로 나타났다. $H_2O_2$의 6xHis-FeSOD에 대한 저해는 0.5 mM에서 나타났다. 따라서 6xHis-FeSOD는 효소활성은 유지되더라도 열 안정성이 크게 감소되는 결과를 얻었다. 이것은 6xHis-태그가 활성부위 보다는 단백질 전체 구조에 더 많은 영향을 미친 결과라고 생각되었다.

Halobacterium halobium 의 생육조건 및 Protease 에 관한 연구 (A Study on Growth Condition and Proteolytic Enzyme of Halobacterium halobium)

  • 민윤식
    • 한국식품영양과학회지
    • /
    • 제23권5호
    • /
    • pp.856-862
    • /
    • 1994
  • In salt-preserved foods of every kinds, it was examined the growth condition of halophilic bacteria that induced a change of colour, taste, nutritive substance, a production condition of enzyme and a character of crude enzyme. Used bacteria is H. halobium a kind of extremely halophilic bacteria, and the required of optimum culture needed a quite long time of crude enzyme production is 168 hours. Optimum pH is about 7-7.5, so the traditional food of such neutrality pH as soybean paste and soy sauce particularly come into trouble because the growth can flourish in neutrality or alkaliescence, and the crude enzyme also appeared that best activation between pH 6 and pH 8. The optimum temperature is about 37$^{\circ}C$, the optimum temperature of enzyme is about 40 $^{\circ}C$ and the temperature stability is settled for 15 minutes and it is completely inactivated at 10 minutes. In the influence of each metal ion, Fe++ and Mn++ a stimulated the growth of H.halobium and the activation of enzyme, Cu++ and Zn++ were identified that made the growth and the activation of enzyme inhibit.

  • PDF

대장균으로 부터 생산된 L-lactate Dehydrogenase의 정제 및 특성 (Purification and Properties of Thermostable L-Lactate Dehydrogenase Produced by Escherichia Coli)

  • Song, Jae-Young;Kim, Kyoug-Sook
    • 한국식품영양과학회지
    • /
    • 제23권6호
    • /
    • pp.964-972
    • /
    • 1994
  • The 4.3-kb gene coding for L-lactate dehydrogenase of Bacillus stearothermophilus has been subcloned and expressed in E. coli cells. The enzyme was purified 200-fold with 25% yield by heat treatment , DEAE-Sephadex, and NAD++ -Sepharose CL-4B affinity chromatography followed by gel filtration through Sephadex G-200 . The molecular weight of the purfied enzyme was estimated to be about 35, 000 and 140, 000 on SDS-polyacrylamide gel electrophoresis and gel filtration, respectively. indicating that the enzyme is composed of four identical subunits. THe enzyme for pyruvate reduction and lactate oxdiation was stable at 60 and 75$^{\circ}C$ for 30 min, and the optimal temperatures for both reactions were 60 and 7$0^{\circ}C$, respectively. The enzyme had an optimal pH at 5.5 and 8.5 in pyruvate reduction and lactate oxidation, respectively. The pH stability of enzyme of pyruvate reduction was table between pH 5 and 7. more than 90% of enzyme activity was lost at 1mM FeSO4 and p-chloromercuribonzoate. The maximal activation of the enzyme was obtained with 0.8mM fructose 1, 6-bisphosphate.

  • PDF

"솔보포빅"한 고분자 마이크로 캡슐을 이용한 효소 안정화에 관한 연구 (Stabilization of Enzyme in "Solvophobically" Controlled Polymer Microcapsules)

  • 김용진;김진웅;김준오;김진우;장이섭
    • 대한화장품학회지
    • /
    • 제32권1호
    • /
    • pp.29-33
    • /
    • 2006
  • 본 연구는 효소의 활성을 저해하는 주위 환경, 특히 열로부터 효소의 활성을 장기간 유지할 수 있는 효소 안정화 시스템에 대한 것으로, 이 시스템은 poly(${\epsilon}-caprolactone$) (PCL) 마이크로 캡슐로, 파파인 효소를 모델 효소로 하여, poly(propylene glycol) (PPG) 층이 코어 효소층을 둘러싸고 있는 형태로 설계되어 있다. 공촛점 현미경 및 장기 열 안정도 결과를 분석해본 결과, 파파인 효소가 소수성 PPG로 둘러쌓여 있고, 배타적 볼륨 효과(exclusive volume effect)에 의해 안정화되어 있음을 밝힐 수 있었다. 이와 같이 향상된 효소의 열 안정도는 소수성 사슬이 긴 PPG를 사용할수록 증가됨을 알 수 있었으며, 이것은 효소와 PPG 계면 사이에서 PPG 층이 파파인 효소를 효과적인 형태 고정(conformational anchoring)을 통해 안정화한 것임을 알 수 있었다.