Browse > Article
http://dx.doi.org/10.5806/AST.2016.29.3.105

Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group  

Lee, Hye Rin (Department of Advanced Materials & Chemical Engineering, Hannam University)
Kim, Moon Il (Department of BioNano Technology, Gachon University)
Hong, Sang Eun (Department of Chemistry, Hannam University)
Choi, Jaeyeong (Department of Chemistry, Hannam University)
Kim, Young Min (Department of Biological Sciences and Biotechnology, Hannam University)
Yoon, Kuk Ro (Department of Chemistry, Hannam University)
Lee, Seungho (Department of Chemistry, Hannam University)
Ha, Sung Ho (Department of Advanced Materials & Chemical Engineering, Hannam University)
Publication Information
Analytical Science and Technology / v.29, no.3, 2016 , pp. 105-113 More about this Journal
Abstract
The present study investigated the immobilization of lipases on silica nanoparticles and silica-coated magnetite nanoparticles as supports with a functional group to enhance the stability of lipase. The influence of functional groups, such as the epoxy group and the amine group, on the activity and stability of immobilized lipase was also studied. The epoxy group and the amino group were introduced onto the surface of nanoparticles by glycidyl methacrylate and aminopropyl triethoxysilane, respectively. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles with a functional group showed slightly lower initial enzyme activities than free enzyme; however, the immobilized Candida rugosa lipase retained over 92 % of the initial activity, even after 3 times reuse. Lipase was also immobilized on the silica-coated magnetite nanoparticles by cross-linked enzyme aggregate (CLEA) using glutaraldehyde and covalent binding, respectively, were also studied. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles by CLEA and covalent binding showed higher enzyme activities than free enzyme, while immobilized Candida rugosa lipase retained over 73 % of the initial activity after 5 times reuse.
Keywords
nanoparticle; silica-coated magnetite nanoparticles; lipase; immobilization; activity; stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Napierska, L. C. Thomassen, D. Lison, J. A. Martens and P. H. Hoet, Part Fibre Toxicol., 7(1), 39-71 (2010).   DOI
2 R. K. Iler, ‘The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica’, Wiley, New York, 1979.
3 W. Stber, A. Fink and E. Bohn, J. Colloid Interface Sci., 26(1), 62-69 (1968).   DOI
4 Y.-H. Lee, J.-O. Lee and K.-S. Chun, Anal. Sci. Technol., 23(6), 579-586 (2010).   DOI
5 S. H. Ha, M. N. Lan and Y.-M. Koo, Enzym. Microb. Technol., 47(1-2), 6-10 (2010).   DOI
6 S. H. Ha, M. N. Lan, S. H. Lee, S. M. Hwang and Y.-M. Koo, Enzym. Microb. Technol., 41(4), 480-483 (2007).   DOI
7 S. H. Ha, S. H. Lee, D. T. Dang, M. S. Kwon, W.-J. Chang, Y. J. Yu, I. S. Byun and Y.-M. Koo, Korean J. Chem. Eng., 25(2), 291-294 (2008).   DOI
8 W. Tischer and F. Wedekind, Top. Curr. Chem., 200, 95-126 (1999).   DOI
9 J. M. Guisan, 'Immobilization of Enzymes and Cells', 2nd Ed., Humana Press, New Jersey, 2006.
10 M. I. Kim, J. B. Kim, J. W. Kim, S. J. Shin, H. B. Na, T. H. Hyeon, H. G. Park and H. N. Chang, Micropor. Mesopor. Mater., 111(1-3), 18-23 (2008).   DOI
11 M. I. Kim, J. B. Kim, J. W, Lee, H. Jia, H. B. Na, J. K. Youn, J. H. Kwak and A. Dohnalkova, Biotechnol. Bioeng., 96(2), 210-218 (2007).   DOI
12 O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem. 193, 265-275 (1951).
13 D. T. Dang, S. H. Ha, S.-M. Lee, W. -J. Chang and Y.-M. Koo, J. Mol. Catal. B: Enzym., 45(3-4), 118-121 (2007).   DOI
14 M. N. V. Ravi Kumar, M. Sameti, S. S. Mohapatra, X. Kong, R. F. Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt and C. M. Lehr, J. Nanosci. Nanotechnol., 4(7), 876-881 (2004).   DOI
15 I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu and V. S. Lin, Adv. Drug Deliv. Rev., 60(11), 1278-1288 (2008).   DOI
16 M. I. Kim, H. O. Ham, S. D. Oh, H. G. Park, H. N. Chan and S. H. Choi, J. Mol. Catal. B: Enzym., 39(1-4), 62-68 (2006).   DOI
17 O. Salata, J. Nanobiotechnology, 2, 3-8 (2004).   DOI
18 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chem. Rev., 108(6), 2064-2110 (2008).   DOI
19 C. Sun, J. S. Lee and M. Zhang, Adv. Drug Delivery Rev., 60(11), 1252-1265 (2008).   DOI
20 P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie and Z. F. Liu, Sci. Total Environ., 424, 1-10 (2012).   DOI
21 A. K. Johnson, A. M. Zawadzka, L. A. Deobald, R. L. Crawford and A. J. Paszczynski, J. Nanopart. Res., 10(6), 1009-1025 (2008).   DOI
22 Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C. N. Sukenik and G. Markovich, Langmuir, 17(25), 7907-7911 (2001).   DOI
23 H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong and S. Jon, J. Am. Chem. Soc., 128 (22), 7383-7389 (2006).   DOI
24 H.-L. Liu, S. P. Ko, J.-H. Wu, M.-H. Jung, J. H. Min, J. H. Lee, B. H. An and Y. K. Kim, J. Magn. Magn. Mater., 310(2), 815-817 (2007).   DOI
25 Y. Lee, J. Lee, C. J. Bae, J.-G. Park, H. -J. Noh, J. -H. Park and T. Hyeon, Adv. Funct. Mater., 15(3), 503-509 (2005).   DOI
26 J. W. Lee, Y. J. Lee, H. B. Na, T. Y. Yu, H. Kim, S. M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. S. Hwang, J. G. Park, J. B. Kim and T. H. Hyeon, Small, 4(1), 143-152 (2008).   DOI
27 P. Villeneuve, J. M. Muderhwa, J. Graille and M. J. Haas, J. Mol. Catal. B: Enzym., 9(4-6), 113-148 (2000).   DOI