• Title/Summary/Keyword: enzyme reuse

Search Result 19, Processing Time 0.026 seconds

Immobilization of Fructosyltransferase to a Porous Carrier Bearing Quaternary Alkyl Alkanolammonium Groups (Quaternary Alkyl Alkanolammonium기를 가지는 다공성 지지체에 Fructosyltransferase의 고정화)

  • 정미선;이선희;전덕영;황금택;엄태붕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.534-539
    • /
    • 1997
  • In order to reuse enzyme efficiently, a mthod for ionic binding of fructosyltransferase to a porous carrier bearing quaternary alkyl alkanolammonium groups was investigated. The fructosyltransferase activity of the immobilized enzyme increased with increasing amount of loaded enzyme, and maximally reached 770U/g of the carrier when loaded amount of the enzyme was 18.2 mg/g carrier. The immobilized fructosyltransferase had optimum pH and temperature of 7.5 and 45$^{\circ}C$, respectively, whereas soluble enzyme had 6.5 and 55$^{\circ}C$: the Km value for the immobilized enzyme was 27.8 mM for sucrose, which was the same as that of soluble enzyme. In a batch reactor, the enzyme produced a mixture of fructooligosaccharides, mainly F$_2$G, from sucrose with the slight loss of enzyme activity during continuous operation of 12 days at 42$^{\circ}C$.

  • PDF

Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

  • Zhang, Shuang;Shang, Wenting;Yang, Xiaoxi;Zhang, Shujuan;Zhang, Xiaogang;Chen, Jiawei
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2741-2746
    • /
    • 2013
  • The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

Bioconversion of progesterone by immobilized aspergillus phoenicis (고정화된 aspergillus phoenicis를 이용한 progesterone 전환)

  • 박희은;김말남
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.70-76
    • /
    • 1989
  • Progestrone bioconversion by immobilized Aspergillus phoenicis was studied. Progesterone was converted into 11$\alpha$-hydroxyprogesterone and 3-minor byproducts. Whole cells of A. phoenicis were immobillized by enreappment with calcium-alginate, K-carrageenan, or polyacrylamide. Of these materials tested, cell immobilized in $Ca^{2+}$ -alginate gels showed the highest activity for 11$\alpha$-hydroxylation of progesterone. In the case of mycelia immobilized in $Ca^{2+}$-alginate, futher progressing hydroxylation of 11$\alpha$-hydroxyprogesterone was greatly reduced. Spores of A. phoenicis which were immobillized with $Ca^{2+}$-alginate and germinatedin situ for 25 hours showed higher 11$\alpha$-hydroxylase activity than those of entrapped whole mycelia and maintained initial enzyme activity for all 8 times of repeated use. After 16 times of reuse, the activity was declined 30% or more. When culture media and $Zn^{2+}$ were introduced into the reaction media, the activity of the immobilized mycelia which had been lowered due to many times of reuse was effectively reactivated.

  • PDF

Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group (실리카 코팅된 자성 나노입자로의 효소 고정화에 사용된 작용기가 리파아제의 활성과 안정성에 미치는 영향)

  • Lee, Hye Rin;Kim, Moon Il;Hong, Sang Eun;Choi, Jaeyeong;Kim, Young Min;Yoon, Kuk Ro;Lee, Seungho;Ha, Sung Ho
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.105-113
    • /
    • 2016
  • The present study investigated the immobilization of lipases on silica nanoparticles and silica-coated magnetite nanoparticles as supports with a functional group to enhance the stability of lipase. The influence of functional groups, such as the epoxy group and the amine group, on the activity and stability of immobilized lipase was also studied. The epoxy group and the amino group were introduced onto the surface of nanoparticles by glycidyl methacrylate and aminopropyl triethoxysilane, respectively. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles with a functional group showed slightly lower initial enzyme activities than free enzyme; however, the immobilized Candida rugosa lipase retained over 92 % of the initial activity, even after 3 times reuse. Lipase was also immobilized on the silica-coated magnetite nanoparticles by cross-linked enzyme aggregate (CLEA) using glutaraldehyde and covalent binding, respectively, were also studied. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles by CLEA and covalent binding showed higher enzyme activities than free enzyme, while immobilized Candida rugosa lipase retained over 73 % of the initial activity after 5 times reuse.

Stabilization of a Raw-Starch-Digesting Amylase by Multipoint Covalent Attachment on Glutaraldehyde-Activated Amberlite Beads

  • Nwagu, Tochukwu N.;Okolo, Bartho N.;Aoyagi, Hideki
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.628-636
    • /
    • 2012
  • Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at $60^{\circ}C$, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at $40^{\circ}C$. The apparent $K_m$ of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.

Immobilization of Endo- and Exoinulinase on Vinylsulfone Activated Agarose (Vinylsulfone Activated Agarose 에 Endo- 및 Exoinulinase의 고정화)

  • 한상배;송근섭;정용섭;손희숙;우순자;엄태봉
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.20-24
    • /
    • 1992
  • In order to reuse inulinase effectively, a method for immobilizing both endo- and exoinulinase to vinylsulfone activated agarose via covalent bond was investigated. The immobilized enzyme preparation had, respectively, 400 U for exoinulinase activity and 80 U for endoinu- Iinase activity per gram gel. A thermal stability by immobilization had increased in the case of exoinulinase. Optimum pHs for two immobilized enzymes were 4.4 to 5.0. Synergistic effect which depends on mixed ratio of two immobilized enzymes was the best when the mixed ratio of endo/exo lay between 0.1 and 0.5, and its activity of the mixed enzyme increased 1.7 times as compared to that of each immobilized enzyme. Inulinase activities of both of the immobilized enzymes did not change during 20 times experimental runs in a batch reactor.

  • PDF

Study on the immobilization of plant glutathione S-transferase for development of herbicide detection kit (제초제 검출 키트 개발을 위한 식물 해독효소 고정화 연구)

  • Cho, Hyun-Young;Lee, Jin-Joo;Kong, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • Glutathione S-transferase is known to play a crucial role in detoxification in many cases. To develop a herbicide detection biosensor, we in this study attempted to immobilize glutathione S-transferase enzyme on solid supports, polystyrene and agarose, and Na-alginate. These matrixes were attractive materials for the construction of biosensors and might also have utility for the production of immobilized enzyme bioreactors. We also compared the activities of glutathione-S-transferase immobilized OsGSTF3 and free OsGSTF3. The specific activity of the free enzyme in solution was 3.3 higher than the immobilized enzyme. These results suggest that 50% of the enzyme was bound with the catalytic site in polystyrene-alkylamine bead and immobilized enzymes showed 80% remaining activity until 3 times reuse.

Solid-phase Refolding of Immobilized Enterokinase for Fusion Protein Cleavage (융합단백질 절단반응을 위한 고정화된 enterokinase의 고체상 재접힘)

  • 서창우;나세진;박신혜;박승국;이은규
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.306-311
    • /
    • 2003
  • Solid-phase refolding of immobilized proteins can be an effective way to reuse an immobilized enzyme column. Oriented immobilization methods are known to provide higher activity of the immobilized enzymes. In this study, using recombinant EK (enterokinase) as a model enzyme and a fusion protein, that consisted of recombinant human growth hormone and six His tag that was linked by the peptide of EK-specific recognition sequence, as a model substrate, we evaluated two oriented immobilization methods, i. e., reductive alkylation of N-terminus ${\alpha}$-amine and affinity interaction between poly-histidine tag and Ni-NTA (nickel-nitrilotriacetic acid). The immobilization yield, activity and cleavage of the immobilized enzymes, and the yield of solid-phase refolding were compared. The Ni affinity immobilization and the covalent immobilization yields were about 100% and 65%, respectively. But the specific activities were the same, about 50% of that of the soluble enzyme. The cleavage rate by the covalently immobilized EK was higher than the soluble enzyme and the side reaction of cryptic cleavage was significantly decreased. Covalently immobilized EK showed almost 100% refolding yield but the affinity immobilized EK showed only 70% yield, which suggested the covalent conjugation provided more rigid ‘reference structure’ for the solid-phase refolding. The monomeric hGH could be easily obtained by capturing the cleaved poly Histidine tag by the Ni affinity column.

Laccase Immobilization on Copper-Magnetic Nanoparticles for Efficient Bisphenol Degradation

  • Sanjay K. S. Patel;Vipin C. Kalia;Jung-Kul Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.127-134
    • /
    • 2023
  • Laccase activity is influenced by copper (Cu) as an inducer. In this study, laccase was immobilized on Cu and Cu-magnetic (Cu/Fe2O4) nanoparticles (NPs) to improve enzyme stability and potential applications. The Cu/Fe2O4 NPs functionally activated by 3-aminopropyltriethoxysilane and glutaraldehyde exhibited an immobilization yield and relative activity (RA) of 93.1 and 140%, respectively. Under optimized conditions, Cu/Fe2O4 NPs showed high loading of laccase up to 285 mg/g of support and maximum RA of 140% at a pH 5.0 after 24 h of incubation (4℃). Immobilized laccase, as Cu/Fe2O4-laccase, had a higher optimum pH (4.0) and temperature (45℃) than those of a free enzyme. The pH and temperature profiles were significantly improved through immobilization. Cu/Fe2O4-laccase exhibited 25-fold higher thermal stability at 65℃ and retained residual activity of 91.8% after 10 cycles of reuse. The degradation of bisphenols was 3.9-fold higher with Cu/Fe2O4-laccase than that with the free enzyme. To the best of our knowledge, Rhus vernicifera laccase immobilization on Cu or Cu/Fe2O4 NPs has not yet been reported. This investigation revealed that laccase immobilization on Cu/Fe2O4 NPs is desirable for efficient enzyme loading and high relative activity, with remarkable bisphenol A degradation potential.

Scale-up of Covalently Immobilized Urokinase Column and Repeated Use of It by Solid-Phase Refolding (공유결합으로 고정화된 urokinase 칼럼의 스케일업과 solid-phase refolding에 의한 반복 사용)

  • 서창우;최강선;이은규
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.500-504
    • /
    • 2001
  • We scaled up a covalent immobilization system of urokinase to the activated Sepharose and used it repeatedly to cleava a fusion protein consisting of human growth hormone and GST fragment. After scale up from 6 ml to 250 ml. the column system still demonstrated basically the same performance in terms of urokinase immobilization and fusion protein cleavage. When the column was washed with 6 M guanidine HCI after the cleavage reaction, the immobilized urokinase showed no activity probably becasue it was fully unfoled. However, as the denaturant was gradually removed from the column the immobilized urokinase fully regained its bioactivity, which indicated it was properly refolded into is natie conformation as covalently attached to the solid matrix. After 20 cycles of this solid-phase unfolding/refolding. the immobilized urokinase maintained approx. 80% of the initial bioactivity. This method provides and efficient protocol to apply the solid-phase refolding technique to improve the longevity of immobilized enzyme columns.

  • PDF