• 제목/요약/키워드: enzymatic kinetics

검색결과 63건 처리시간 0.024초

Chemical Modification of Tryptophan Residue in Bovine Brain succinic Semlaldehyde Reductase

  • 홍정우;전성규;반재훈;박진수;권혁일;조성우;최수영
    • Animal cells and systems
    • /
    • 제1권4호
    • /
    • pp.583-587
    • /
    • 1997
  • Incubation of an NADPH-dependent succinic semialdehyde reductase from bovine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $6.8\times{10}^3$ $M^-1$ $min^{-1}$. The inactivation was prevented by preincubation of the enzyme with substrate succinic semialdehyde, but not with coenzyme NADPH. There was a linear relation-ship between oxindole formation and the loss of enzyme activity. Spectro-photometric studies indicated that about one oxindole group per molecule of the enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of succinic semialdehyde reductase is modulated by binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

A Continuous Spectrophotometric Assay for NADPH-cytochrome P450 Reductase Activity Using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide

  • Yim, Sung-Kun;Yun, Chul-Ho;Ahn, Tae-Ho;Jung, Heung-Chae;Pan, Jae-Gu
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.366-369
    • /
    • 2005
  • NADPH-cytochrome P450 reductase (CPR) transfers electrons from NADPH to cytochrome P450 and also catalyzes the one-electron reduction of many drugs and foreign compounds. Various spectrophotometric assays have been performed to examine electron-accepting properties of CPR and its ability to reduce cytochrome $b_5$, cytochrome c, and ferricyanide. In this report, reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) by CPR has been assessed as a method for monitoring CPR activity. The principle advantage of this substance is that the reduction of MTT can be assayed directly in the reaction medium by a continuous spectrophotometric method. The electrons released from NADPH by CPR were transferred to MTT. MTT reduction activity was then assessed spectrophotometrically by measuring the increase of $A_{610}$. MTT reduction followed classical Michaelis-Menten kinetics ($K_m\;=\;20\;{\mu}M$, $k_{cat}\;=\;1,910\;min^{-1}$). This method offers the advantages of a commercially available substrate and short analysis time by a simple measurement of enzymatic activity of CPR.

The Enzymatic Properties of Actinidine from Kiwifruit

  • Nam, Seung-Hee;Walsh, Marie K.;Yang, Kwang-Yeol
    • Food Science and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.453-457
    • /
    • 2006
  • Activity and stability of kiwifruit actinidine was determined in various conditions of pH, salt, and temperature using N-${\alpha}$-CBZ-lysine P-nitrophenyl ester as the substrate. Actinidine activity was low below pH 6, and undetectable below pH 3. The enzyme was stable in a pH range of 6.0-8.5. At $4^{\circ}C$ the enzyme was inactive in the presence of greater than 36% vinegar and in 2 M NaCl. Actinidine at $25^{\circ}C$ was unstable in 24% vinegar but stable in up to 3 M NaCl. With regard to freeze-thaw stability, actinidine retained 85% residual activity after being frozen at $-20^{\circ}C$ for 3 days. Based on Arrenius and Lineweaver-Burk plots, actinidine became unstable at greater than $45^{\circ}C$ with only 30% residual activity remaining after 6 min. The Km, kcat, and kcat/Km values of actinidine were $56\;{\mu}M$, 67/sec, and $1.2\;{\mu}M/sec$, respectively.

Synthesis of Acetins from Glycerol using Lipase from Wheat Extract

  • Pradima, J;Rajeswari, M Kulkarni;Archna, Narula;Sravanthi, V;Rakshith, R;Nawal, Rabia Nizar
    • Korean Chemical Engineering Research
    • /
    • 제57권4호
    • /
    • pp.501-506
    • /
    • 2019
  • New technology-driven biocatalysts are revolutionizing the biochemical industries. With maximum utilization of renewable feedstock, biocatalysts have been the basis for a major breakthrough. Lipases are the most widely established catalysts used for hydrolysis, esterification and transesterification reactions. In this research, a biochemical process that combines extraction of lipase enzyme from germinated wheat seeds and its application to valorize glycerol to acetins by esterification is presented. Acetins are among highly rated, value-added products derived from glycerol. The favorable conditions for the enzymatic conversion of glycerol were observed as glycerol to acetic acid molar ratio (1:5), reaction temperature ($40^{\circ}C$) and the amount of enzyme (20% v/v). 65.93% of glycerol conversion was achieved for duration of 15 h with the use of tert-butanol solvent. This method proposes to explore the viability of a biological route to convert glycerol derived from biodiesel industry to acetins with further streamlining.

Evaluation of Three Feasible Biodegradation Models for Food Waste

  • Kwon, Sung-Hyun;Cho, Daechul
    • 청정기술
    • /
    • 제28권1호
    • /
    • pp.32-37
    • /
    • 2022
  • Food waste is produced from food factories, food services, and home kitchens. The generated mass reached 5.4 million tons/year in 2020. The basic management technology for such waste has been biological degradation under an anaerobic environment. However, the whole process is intrinsically slow and considerably affected by the inner physicochemical properties of the waste and other surrounding conditions, which makes optimization of the process difficult. The most promising options to counter this massive generation of waste are eco-friendly treatments or recycling. As a preliminary step for these options, attempts were made to evaluate the feasibility and usability of three simulative models based on reaction kinetics. Model (A) predicted relative changes over reaction time for reactant, intermediate, and product. Overall, an increased reaction rate produced less intermediate and more product, thereby leading to a shorter total reaction time. Particle diminishing model (B) predicted reduction of the total waste mass. The smaller particles diminished faster along with the dominant effect of microbial reaction. In Model (C), long-chain cellulose was predicted to transform into reducing sugar. At a standard condition, 48% of cellulose molecules having 105 repeating units turned into reducing sugar after 100 h. Also it was found that the optimal enzyme concentration where the highest amount of remnant sugar was harvested was 1 mg L-1.

재조합 Bacillus subtilis 에서 발현된 Streptomyces albus 유래 amylase 의 효소공학적 특성 (Characterization of Enzymatic Properties of Streptomyces albus Amylase Expressed in Recombinant Bacillus subtilis)

  • 박근우;김명동;안장우;김영배;서진호
    • 한국식품과학회지
    • /
    • 제30권6호
    • /
    • pp.1426-1431
    • /
    • 1998
  • 본 연구에서는 재조합 Bacillus subtilis에서 발현된 Streptomyces albus KSM-35유래의 amylase를 정제하고 특성을 구명하였다. 정제된 효소는 SDS-PAGE를 통하여 분자량이 약 50 kD인 것으로 밝혀졌으며, isoelectric focusing을 통하여 측정된 pI값은 약 4.3이었다. 효소의 최적 반응온도는 $45^{\circ}C$이었으며 최적의 pH는 6.0이었다. D-value는 45, $55^{\circ}C$에서 각각 279분, 191분이었고 D-value로부터 계산된 Z-value는 $17.7^{\circ}C$였다. 수용성 전분용액을 기질로 사용한 효소반응의 초기에는 maltotriose, maltopentaose와 maltotetraose가 주로 생성되었지만 시간이 경과함에 따라 이들의 농도는 감소하였고 maltose의 농도가 점차 증가하였다. 이러한 반응 생성물의 분해는 Thin layer chromatography를 통하여 확인할 수 있었다. 기질에 의한 저해가 없다고 가정하고 Michaelis-Menten kinetics를 이용하여 속도상수를 추정하였을 때 최대 반응속도는 0.37 mM/min, Michaelis-Menten 상수는 0.13% (w/v)로 나타났다.

  • PDF

토끼의 수종 점막 추출액중 $[D-Ala^2]-Methionine$ Enkephalinamide의 분해 및 안정화 (Degradation and Stabilization of $[D-Ala^2]-Methionine$ Enkephalinamide in Various Rabbit Mucosa Extracts)

  • 전인구;양윤정
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권3호
    • /
    • pp.173-183
    • /
    • 1992
  • To study the feasibility of transmucosal delivery of $[D-ala^2]-methionine$ enkephalinamide (YAGFM), its enzymatic degradation and stabilization in various rabbit mucosal extracts were investigated by HPLC method. The degradation of YAGFM was observed to follow the first-order kinetics and the half-lives of YAGFM in the nasal, rectal and vaginal mucosal extracts were found to be 25.7, 3.0 and 7.8 hr, respectively. However, there was no significant difference in degradation rates of YAGFM between the mucosal and serosal extracts obtained from the same mucosal membrane. This finding suggests that even a synthetic enkephalin analog, which is designed to be resistent to aminopeptidases, needs to be fully protected from the enzymatic degradation in mucosal sites for the delivery of the analog through mucosal routes. To inhibit the degradation of YAGFM in various mucosal extracts, effects of enzyme inhibitors such as bestatin (BS), amastatin (AM), thiorphan (TP), thimerosal (TM) and EDTA, alone or in combination, and modified cyclodextrins were observed by assaying YAGFM staying intact during 24 hr-incubation at $37^{\circ}C$. It was found from the results that mixed inhibitors such as TM (0.5 mM)/EDTA (5 mM) or AM $(50{\mu}M)/TM$ (0.5 mM)/EDTA (5 mM) provided very useful means for the stabilization in various mucosal extracts. The latter was found to protect YAGFM from the degradation in the nasal, rectal, and vaginal mucosal extracts by 90.9, 90.4 and 91.3%, respectively, after 24 hr-incubation, suggesting almost complete inhibition of YAGFM-degrading enzymes present in the incubation mixture. However, BS $(50{\mu}M)$, AM 50 $(50{\mu}M)$ or TP$(50{\mu}M)$ alone did not reveal sufficient inhibition except TM (0.5 mM) or EDTA (5 mM). The adddition of $2-hydroxylpropyl-{\beta}-cyclodextrin$(10%) to the nasal mucosal extract, and $dimethyl-{\beta}-cyclodextrin$(10%) to the rectal and vaginal mucosal extracts reduced the first-order rate constants for the degradation of YAGFM by 5.8, 17.3 and 8.9 times, respectively, compared to those with no additive.

  • PDF

온도와 수분활성을 달리한 녹차 저장중의 비효소적 갈변 (The Kinetics of Non-Enzymatic Browning Reaction in Green Tea During Storage at Different Water Activities and Temperatures)

  • 김영숙;정연화;전순실;김무남
    • 한국식품영양과학회지
    • /
    • 제17권3호
    • /
    • pp.226-232
    • /
    • 1988
  • 변온조건하에서 녹차를 저장하였을 때 수분활성에 따른 browning development를 반응속도론적으로 고찰한 결과 brownung development는 영차반응으로 증가하였으며, 반응속도는 수분활성이 높을수록, 저장속도가 높을수록 빨랐고, 각 수분활성에서의 활성화 에너지는 $1.5{\sim}2.4kcal/mole$, $Q_{10}$치는 $1.07{\sim}1.12$였다. Accelerated shelf-life test로부터 구한 $25^{\circ}C$에서의 shelf-life는 $57{\sim}113$일의 범위였으며, 온도와 수분활성이 증가함에 따라 단축되었다. 변온조건에서의 실측치와 예측치를 비교한 결과 유효온도차는 $2.66{\sim}5.64^{\circ}C$였고, shelf-life는 예측치가 높게 나타났으나 이 방면의 연구가 더욱 진행된다면 변온저장의 결과를 효율적으로 예측할 수 있을 것으로 예상된다.

  • PDF

효소형 Time-Temperature Integrator를 이용한 쇠고기의 부패확인 (Use of Commercial Enzymatic Time Temperature Integrator for Monitoring Spoilage of Ground Beef)

  • 이중용;이승주;홍광원
    • 산업식품공학
    • /
    • 제14권3호
    • /
    • pp.229-234
    • /
    • 2010
  • 시판되는 효소형 TTI를 이용하여 다양한 온도에서 보관 중인 간 쇠고기의 부패 확인이 가능한지 조사하였다. 쇠고기의 부패 확인 지표로는 volatile basic nitrogen(VBN)을 이용하였다. 실험 온도 4, 10, 15, 20 및 ${25^{\circ}C}$에서 쇠고기가 부패하는데 소요된 시간은 각각 168, 114, 60, 48 및 24시간이었다. 상기 조건에서 쇠고기의 품질변화는 본 실험에 사용한 3 종류의 C-type TTI(C-1, C-4, 및 C-7)의 반응 종말점들과 일치하지 않았다. TTI의 반응을 쇠고기의 품질변화에 일치시키기 위해 C-1 TTI로부터 효소와 기질 성분을 추출하여 Eppendorf tube에서 서로 다른 양으로 혼합하여 변형된 TTI를 구성하였다. 변형된 CM-1 TTI의 반응은 ${20^{\circ}C}$${25^{\circ}C}$에서 쇠고기의 품질변화와 매우 유사하였으나 다른 온도에서는 일치하지 않았다. 변형된 CM-2 TTI의 반응은 ${15^{\circ}C}$에서만 쇠고기의 품질변화와 일치하였다. 따라서 TTI를 특정한 식품의 품질변화 지시계로 사용하기 위해서는 식품의 부패와 TTI 반응에 대한 체계적인 kinetics 연구들이 필요할 것으로 보인다.

Chemoenzymatic Synthesis of Dual-responsive Amphiphilic Block Copolymers and Drug Release Studies

  • Chen, Peng;Li, Ya-Peng;Wang, Shu-Wei;Meng, Xin-Lei;Zhu, Ming;Wang, Jing-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1800-1808
    • /
    • 2013
  • Dual-responsive amphiphilic block copolymers were synthesized by combining enzymatic ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (CL) and ATRP of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA). The obtained block copolymers were characterized by gel permeation chromatography (GPC), $^1H$ NMR and FTIR-IR. The critical micelle concentration (CMC) of copolymer was determined by fluorescence spectra, it can be found that with hydrophilic block (PDMAEMA) increasing, CMC value of the polymer sample increased accordingly, and the CMC value was 0.012 mg/mL, 0.025 mg/mL and 0.037 mg/mL for $PCL_{50}$-b-$PDMAEMA_{68}$, $PCL_{50}$-b-$PDMAEMA_{89}$, $PCL_{50}$-b-$PDMAEMA_{112}$, $PCL_{50}$-b-$PDMAEMA_{89}$ was chosen as drug carrier to study in vitro release profile of anti-cancer drug (taxol). The temperature and pH dependence of the values of hydrodynamic diameter (Dh) of micelles, and self-assembly of the resulting block copolymers in water were evaluated by dynamic light scattering (DLS). The result showed that with the temperature increasing and pH decreasing, the Dh decreased. Drug-loaded nanoparticles were fabricated using paclitaxel as model. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) had been explored to study the morphology of the hollow micelles and the nanoparticles, revealing well-dispersed spheres with the average diameters both around 80 nm. In vitro release kinetics of paclitaxel from the nanoparticles was also investigated in different conditions (pH and temperature, etc.), revealing that the drug release was triggered by temperature changes upon the lower critical solution temperature (LCST) at pH 7.4, and at $37^{\circ}C$ by an increase of pH.