Fig. 1. Scheme of synthesis of acetins, from glycerol and acetic acid [11,12].
Fig. 2. Effect of enzyme concentration on glycerol conversion. Experimental conditions: 1:5 molar ratio glycerol/acetic acid at temperature 40 ℃, 15 h reaction time.
Fig. 3. Effect of molar ratio of glycerol: acetic acid on glycerol conversion. Experimental conditions: 15 h reaction time, 20% v/v extracted lipase enzyme at temperature 40 ℃.
Fig. 4. Effect of organic solvent on the conversion of glycerol. Experimental conditions: 1:5 molar ratio glycerol/acetic acid at temperature 40 ℃, 15 h reaction time, 20% v/v extracted lipase enzyme concentration.
Fig. 5. Comparison of glycerol conversion with and without organic solvent at different time intervals. Experimental conditions: 1:5 molar ratio glycerol/acetic acid at temperature 40 ℃, 20% v/v extracted lipase enzyme concentration.
Fig. 6. FT-IR spectra of extracted Lipase enzyme.
Fig. 7. Enzyme kinetics for acetin production with and without solvent.
References
- Amini, Z., Ong, H. C., Harrison, M. D., Kusumo, F., Mazaheri, H. and Ilham, Z., "Biodiesel Production by Lipase-catalyzed Transesterification of Ocimum basilicum L. (sweet basil) Seed Oil," Energ. Convers. Manage., 132, 82-90(2017). https://doi.org/10.1016/j.enconman.2016.11.017
- Sharma, A., Ghosh, A., Pandey, R. A. and Mudliar, S. N., "Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility," Korean J. Chem. Eng., 53(2), 216-223(2015). https://doi.org/10.9713/kcer.2015.53.2.216
- Shafiei, A., Rastegari, H., Ghaziaskar, H. S. and Yalpani, M., "Glycerol Transesterification with Ethyl Acetate to Synthesize Acetins Using Ethyl Acetate as Reactant and Entrainer," Biofuel Research J., 4(1), 565-570(2017). https://doi.org/10.18331/BRJ2017.4.1.7
- Bedogni, G. A., Acevedo, M. D., Aguzin, F., Okulik, N. B. and Padro, C. L., "Synthesis of Bioadditives of Fuels from Biodieselderived Glycerol by Esterification with Acetic Acid on Solid Catalysts," Environ. Technol., 39(15), 1955-1966(2018). https://doi.org/10.1080/09593330.2017.1345986
- Testa, M. L., La Parola, V., Liotta, L. F. and Venezia, A. M., "Screening of Different Solid Acid Catalysts for Glycerol Acetylation," J. Mol. Catal. A-Chem., 367, 69-76(2013). https://doi.org/10.1016/j.molcata.2012.10.027
- Costa, I. C., Itabaiana Jr, I., Flores, M. C., Lourenço, A. C., Leite, S. G., de M.e Miranda, L. S., Leal, I. C. and de Souza, R.O., "Bio-catalyzed Acetins Production Under Continuous-flow Conditions: Valorization of Glycerol Derived from Biodiesel Industry," J. Flow Chem., 3(2), 41-45(2013). https://doi.org/10.1556/JFC-D-13-00001
- Liao, X., Zhu, Y., Wang, S. G., Chen, H. and Li, Y., "Theoretical Elucidation of Acetylating Glycerol with Acetic Acid and Acetic Anhydride," Appl. Catal. B-Environ., 94(1-2), 64-70(2010). https://doi.org/10.1016/j.apcatb.2009.10.021
- Ghaziaskar, H. S., Afsari, S., Rezayat, M. and Rastegari, H., "Quaternary Solubility of Acetic Acid, Diacetin and Triacetin in Supercritical Carbon Dioxide," J. Supercrit. Fluid., 119, 52-57 (2017). https://doi.org/10.1016/j.supflu.2016.09.005
- Pradima, J. and Kulkarni, M. R., "Review on Enzymatic Synthesis of Value Added Products of Glycerol, a by-product Derived From Biodiesel Production," Resource-Efficient Technologies., 3(4), 394-405(2017). https://doi.org/10.1016/j.reffit.2017.02.009
- Cahyono, R. B., Mufrodi, Z., Hidayat, A. and Budiman, A., "Acetylation of Glycerol for Triacetin Production using Zr-Natural Zeolite Catalyst," ARPN J. Appl. Sci., 11(8), (2016).
- Dalla Costa, B. O., Decolatti, H. P., Legnoverde, M. S. and Querini, C. A., "Influence of Acidic Properties of Different Solid Acid Catalysts for Glycerol Acetylation," Catal. Today., 289, 222-230 (2017). https://doi.org/10.1016/j.cattod.2016.09.015
- Zhou, L., Nguyen, T. H. and Adesina, A. A., "The Acetylation of Glycerol over Amberlyst-15: Kinetic and Product Distribution," Fuel Process Technol., 104, 310-318(2012). https://doi.org/10.1016/j.fuproc.2012.06.001
- Sun, J., Tong, X., Yu, L. and Wan, J., "An Efficient and Sustainable Production of Triacetin from the Acetylation of Glycerol Using Magnetic Solid Acid Catalysts Under Mild Conditions," Catal Today., 264, 115-122(2016). https://doi.org/10.1016/j.cattod.2015.07.011
- Veluturla, S., Archna, N., Subba Rao, D., Hezil, N., Indraja, I. S. and Spoorthi, S., "Catalytic Valorization of Raw Glycerol Derived from Biodiesel: a Review," Biofuels, 9(3), 305-314(2018). https://doi.org/10.1080/17597269.2016.1266234
- Testa, M. L., La Parola, V., Mesrar, F., Ouanji, F., Kacimi, M., Ziyad, M. and Liotta, L. F., "Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives," Catalysts, 9(2), 148(2019). https://doi.org/10.3390/catal9020148
- Asmat, S., Husain, Q. and Azam, A., "Lipase Immobilization on Facile Synthesized Polyaniline-coated Silver-functionalized Graphene Oxide Nanocomposites as Novel Biocatalysts: Stability and Activity Insights," RSC Advances, 7(9), 5019-5029(2017). https://doi.org/10.1039/C6RA27926K
- Hirata, D. B., Albuquerque, T. L., Rueda, N., Virgen-Ortiz, J. J., Tacias-Pascacio, V. G. and Fernandez-Lafuente, R., "Evaluation of Different Immobilized Lipases in Transesterification Reactions Using Tributyrin: Advantages of the Heterofunctional Octyl Agarose Beads," J. Mol. Catal. B-Enzym., 133, 117-123(2016). https://doi.org/10.1016/j.molcatb.2016.08.008
- Barros, M., Fleuri, L. F. and Macedo, G. A., "Seed Lipases: Sources, Applications and Properties-a Review," Braz J. Chem. Eng., 27(1), 15-29(2010). https://doi.org/10.1590/S0104-66322010000100002
- Boukid, F., Folloni, S., Ranieri, R. and Vittadini, E., "A Compendium of Wheat Germ: Separation, Stabilization and Food Applications," Trends Food Sci Tech., 78, 120-133(2018). https://doi.org/10.1016/j.tifs.2018.06.001
- Dlugy, C. and Wolfson, A., "Lipase Catalyse Glycerolysis for Kinetic Resolution of Racemates," Bioproc Biosyst Eng., 30(5), 327-330 (2007). https://doi.org/10.1007/s00449-007-0128-x
- Oh, S. and Park, C., "Enzymatic Production of Glycerol Acetate from Glycerol," Enzyme Microb. Tech., 69, 19-23(2015). https://doi.org/10.1016/j.enzmictec.2014.11.004
- Wong, W. C., Basri, M., Razak, C. N. A. and Salleh, A. B., "Synthesis of Medium-chain gLycerides Using Lipase from Candida Rugosa," J. Am Oil Chem. Soc., 77(1), 85-88(2000). https://doi.org/10.1007/s11746-000-0013-9
- Pierozan, M. K., da Costa, R. J., Antunes, O. A., Oestreicher, E. G., Oliveira, J. V., Cansian, R. L., Treichel, H. and de Oliveira, D., "Optimization of Extraction of Lipase from Wheat Seeds (Triticum aestivum) by Response Surface Methodology," J. Agr. Food Chem., 57(20), 9716-9721(2009). https://doi.org/10.1021/jf901816x
- Avelar, M. H., Cassimiro, D. M., Santos, K. C., Domingues, R. C., de Castro, H. F. and Mendes, A. A., "Hydrolysis of Vegetable Oils Catalyzed by Lipase Extract Powder from Dormant Castor Bean Seeds," Ind. Crop. Prod., 44, 452-458(2013). https://doi.org/10.1016/j.indcrop.2012.10.011
- Soares, C. M., De Castro, H. F., De Moraes, F. F. and Zanin, G. M., "Characterization and Utilization of Candida Rugosa Lipase Immobilized on Controlled Pore Silica," Appl. Biochem. Biotechnol., 77-79, 745-757(1999). https://doi.org/10.1385/ABAB:79:1-3:745
- Verdasco-Martin, C. M., Garcia-Verdugo, E., Porcar, R., Fernandez- Lafuente, R. and Otero, C., "Selective Synthesis of Partial Glycerides of Conjugated Linoleic Acids via Modulation of the Catalytic Properties of Lipases by Immobilization on Different Supports," Food Chem., 245, 39-46(2018). https://doi.org/10.1016/j.foodchem.2017.10.072
- Chakraborty, R., Mukhopadhyay, P. and Kumar, B., "Optimal Biodiesel-additive Synthesis Under Infrared Excitation Using Pork Bone Supported-Sb Catalyst: Engine Performance and Emission Analyses," Energ. Convers. Manage., 126, 32-41(2016). https://doi.org/10.1016/j.enconman.2016.07.069
- Tudorache, M., Protesescu, L., Coman, S. and Parvulescu, V. I., "Efficient Bio-conversion of Glycerol to Glycerol Carbonate Catalyzed by Lipase Extracted from Aspergillus niger," Green Chem., 14(2), 478-482(2012). https://doi.org/10.1039/c2gc16294f
- Jung, H., Lee, Y., Kim, D., Han, S. O., Kim, S. W., Lee, J., Kim, Y. H. and Park, C., "Enzymatic Production of Glycerol Carbonate from by-product After Biodiesel Manufacturing Process," Enzyme Microb. Tech., 51(3), 143-147(2012). https://doi.org/10.1016/j.enzmictec.2012.05.004
-
Devendran, S. and Yadav, G. D., "Lipase-catalyzed Kinetic Resolution of (
${\pm}$ )-1-(2-furyl) Ethanol in Nonaqueous Media," Chirality, 26(6), 286-292(2014). https://doi.org/10.1002/chir.22317 - Taher, H. and Al-Zuhair, S., "The Use of Alternative Solvents in Enzymatic Biodiesel Production: a Review," Biofuel. Bioprod. Bior., 11(1), 168-194(2017). https://doi.org/10.1002/bbb.1727
- Teng, W. K., Ngoh, G. C., Yusoff, R. and Aroua, M. K., "A Review on the Performance of Glycerol Carbonate Production via Catalytic Transesterification: Effects of Influencing Parameters," Energ. Convers. Manage., 88, 484-497(2014). https://doi.org/10.1016/j.enconman.2014.08.036
- Paula, A. V., Urioste, D., Santos, J. C. and de Castro, H. F., "Porcine Pancreatic Lipase Immobilized on Polysiloxane-polyvinyl Alcohol Hybrid Matrix: Catalytic Properties and Feasibility to Mediate Synthesis of Surfactants and Biodiesel," J. Chem. Technol. Biot., International Research in Process, Environmental & Clean Technology, 82(3), 281-288(2007).
- Jiang, H., Zhang, Y. and Wang, X., "Effect of Lipases on the Surface Properties of Wheat Straw," Ind. Crop. Prod., 30(2), 304-310(2009). https://doi.org/10.1016/j.indcrop.2009.05.009