Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.6.1800

Chemoenzymatic Synthesis of Dual-responsive Amphiphilic Block Copolymers and Drug Release Studies  

Chen, Peng (Alan G. MacDiarmid Institute of Jilin University)
Li, Ya-Peng (Alan G. MacDiarmid Institute of Jilin University)
Wang, Shu-Wei (Alan G. MacDiarmid Institute of Jilin University)
Meng, Xin-Lei (Alan G. MacDiarmid Institute of Jilin University)
Zhu, Ming (Alan G. MacDiarmid Institute of Jilin University)
Wang, Jing-Yuan (Alan G. MacDiarmid Institute of Jilin University)
Publication Information
Abstract
Dual-responsive amphiphilic block copolymers were synthesized by combining enzymatic ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (CL) and ATRP of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA). The obtained block copolymers were characterized by gel permeation chromatography (GPC), $^1H$ NMR and FTIR-IR. The critical micelle concentration (CMC) of copolymer was determined by fluorescence spectra, it can be found that with hydrophilic block (PDMAEMA) increasing, CMC value of the polymer sample increased accordingly, and the CMC value was 0.012 mg/mL, 0.025 mg/mL and 0.037 mg/mL for $PCL_{50}$-b-$PDMAEMA_{68}$, $PCL_{50}$-b-$PDMAEMA_{89}$, $PCL_{50}$-b-$PDMAEMA_{112}$, $PCL_{50}$-b-$PDMAEMA_{89}$ was chosen as drug carrier to study in vitro release profile of anti-cancer drug (taxol). The temperature and pH dependence of the values of hydrodynamic diameter (Dh) of micelles, and self-assembly of the resulting block copolymers in water were evaluated by dynamic light scattering (DLS). The result showed that with the temperature increasing and pH decreasing, the Dh decreased. Drug-loaded nanoparticles were fabricated using paclitaxel as model. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) had been explored to study the morphology of the hollow micelles and the nanoparticles, revealing well-dispersed spheres with the average diameters both around 80 nm. In vitro release kinetics of paclitaxel from the nanoparticles was also investigated in different conditions (pH and temperature, etc.), revealing that the drug release was triggered by temperature changes upon the lower critical solution temperature (LCST) at pH 7.4, and at $37^{\circ}C$ by an increase of pH.
Keywords
Stimuli-responsive polymers; Amphiphilic block copolymer; Chemoenzymatic synthesis; Drug release;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Van Beilen, J. B.; Li, Z. Curr. Opin. Biotechnol. 2002, 13, 338.   DOI   ScienceOn
2 Murakami, Y.; Hoshi, R.; Hirata, A. J. Mol. Catal. B: Enzym. 2003, 22, 79.   DOI   ScienceOn
3 Ivanov, A. E.; Edink, E.; Kumar, A. Biotechnol. Progr. 2003, 19, 1167.
4 Konwarh, R.; Kalita, D.; Mahanta, C. Appl. Microbiol. Biotechnol. 2010, 87, 1983.   DOI
5 Yoshida, T.; Seno, K. I.; Kanaoka, S. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1155.   DOI   ScienceOn
6 Aoshima, S.; Sugihara, S.; Shibayama, M. Macromol. Symp. 2004, 215, 151.   DOI   ScienceOn
7 Aoshima, S.; Sugihara, S. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3962.   DOI   ScienceOn
8 Ruckenstein, E.; Zhang, H. M. Macromolecules 1998, 31, 9127.   DOI   ScienceOn
9 Hirao, A.; Hayashi, M.; Haraguchi, N. Macromol. Rapid Commun. 2000, 21, 1171.   DOI   ScienceOn
10 Hirao, A.; Higashihara, T.; Inoue, K. Macromolecules 2008, 41, 3579.   DOI   ScienceOn
11 Cunningham, M. F. Prog. Polym. Sci. 2008, 33, 365.   DOI   ScienceOn
12 Matyjaszewski, K.; Spanswick, J. Materialstoday 2005, 8, 26.
13 Yamago, S.; Iida, K.; Yoshida, J. I. J. Amer. Chem. Soc. 2002, 124, 2874.   DOI   ScienceOn
14 Coessens, V.; Pintauer, T.; Matyjaszewski, K. Progress in Polymer Science 2001, 26, 337.   DOI   ScienceOn
15 Tsarevsky, N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270.   DOI   ScienceOn
16 Licciardi, M.; Tang, Y.; Billingham, N. C. Biomacromolecules 2005, 6, 1085.   DOI   ScienceOn
17 Lowe, A. B.; McCormick, C. L. Prog. Polym. Sci. 2007, 3, 283.
18 Cho, J. C.; Cheng, G. L.; Feng, D. S. Biomacromolecules 2006, 7, 2997.   DOI   ScienceOn
19 Prabaharan, M.; Grailer, J. J.; Pilla, S. Biomaterials 2009, 30, 6065.   DOI   ScienceOn
20 Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Commun. 2009, 30, 267.   DOI   ScienceOn
21 Kwon, G. S.; Forrest, M. L. Drug Dev. Res. 2006, 67, 15.   DOI   ScienceOn
22 Meyer, U.; Palmans, A. R. A.; Loontjens, T. Macromolecules 2002, 35, 2873.   DOI   ScienceOn
23 Wang, W.; Li, Y. P.; Zhao, Y. L. Acta Polymerica Sinica 2010, 2, 199.
24 Li, C. Z.; Benicewicz, B. C. Macromolecules 2005, 38, 5929.   DOI   ScienceOn
25 Adam, W.; Stacey, E.; Charles, L. Adv. Drug. Delivery. Rev. 2008, 60, 1018.   DOI   ScienceOn
26 Mertoglu M.; Garnier S.; Laschewsky A. Polymer 2005, 46, 7726.   DOI   ScienceOn
27 Sha, K.; Qin, L.; Li, D. S. Poly Bull. 2005, 54, 1.   DOI
28 Sha, K.; Li, D. S.; Li, Y. P. Macromolecules 2008, 41, 361.   DOI   ScienceOn
29 Tonhauser, C.; Golriz, A. A.; Moers, C. Adv. Mater. 2012, 24, 5559.   DOI   ScienceOn
30 Ray, J. G.; Naik, S. S.; Hoff, E. A. Macromol. Rapid Commun. 2012, 33, 819.   DOI   ScienceOn
31 Ganta, S.; Devalapally, H.; Shahiwala, A. J. Controlled Release. 2008, 126, 187.   DOI   ScienceOn
32 Nishiyama, N.; Bae, Y.; Miyata, K. Drug Discovery Today: Technologies 2005, 2, 21.   DOI   ScienceOn
33 Gao, Z.; Eisenberg, A. Macromolecules 1993, 26, 7353.   DOI   ScienceOn
34 Meng, F.; Zhong, Z.; Feijen, J. Biomacromolecules 2009, 10, 197.   DOI   ScienceOn
35 Zhang, W.; Shi, L.; Ma, R. Macromolecules 2005, 38, 8850.   DOI   ScienceOn
36 Hu, Z.; Xia, X. Adv. Mater. 2004, 16, 305.   DOI   ScienceOn
37 Isojima, T.; Lattuada, M.; Alan Hatton, T. ACS Nano 2008, 2, 1799.   DOI   ScienceOn
38 Plamper, F. A.; Ruppel, M.; Müller, A. H. E. Macromolecules 2007, 40, 8361.   DOI   ScienceOn
39 WellsF, A. Org. Process Res. Dev. 2006, 10, 681.
40 Scarpello, J. T.; Nair, D.; Freitas dos Santos, L. M. J. Membr. Sci. 2002, 203, 71.   DOI   ScienceOn
41 Torque, C.; Bricout, H.; Hapiot, F. Tetrahedron 2004, 60, 6487.   DOI   ScienceOn
42 Lopez-Gallego, F.; Betancor, L.; Hidalgo, A. J. Biotechnol. 2004, 111, 219 .   DOI   ScienceOn